@

NAVAL POSTGRADUATE SCHOOL
Monterey, California

D-A274 904
LT

fRciccTE P9
w2594k B

THESIS

AN OBJECT-ORIENTED LOGISTICS OVER THE SHORE
SIMULATION: AN AID IN THROUGHPUT ESTIMATION

by
Jack S. Noel I1

September 1993

Thesis Advisor: William G. Kemple
Approved for public release; distribution is unlimited.

94-02060
L 94 1 24 067

REPORT DOCUMENTATION Form Approved OMB Np 0700188

blic reporting burden for this collection of informution is extimated 10 averuge | hour per response. including the ume for gview ing imstruction. scarching existing dats
gathening and maintaining the data needed. and completing and reviewing the colicction of information. Send comments regarding this burden estimalc or ey
cr aspect of this collection of information. including suggestions for reducing this burden. to Washingon headquarten Senvices, Directorate for Information Operations §
Reports, 1215 Jetterson Davis Hughway. Suite 1204, Arhington. VA 22202-3302. and to the Office of Management and Budget. Paperw ork Reduction Project
0704-0188) Washington DC 20503,

LLAGENCY USE ONLY rLeave blunk, 2. RFPORT DATE 3.REPORT TYPL AND DATES COVERED
1993 Scptember Master's Thesis
JITLE AND SUBITTLE AN OBJECT-ORIENTED LOGISTICS OVER THE SHORE 5 FUNDING NUMRBERS
SIMULATION: AN AID IN THROUGHPUT ESTIMATION

> AUTHOR(S) Jack 8. Noel It

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8 PERFORMING ORGANIZATION
aval Postgraduate School REPORT NUMBER
onterev CA 93943-5000

o SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10.SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTLES The views expressed in this thesis are those of the author and do not reflect the official policy or position
[iof the Departiment of Defense or the U.S. Govemment

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODI:
Approved for public release. distribution is unlimited.

13.ABSTRACT rmaximum 200 words)

This thesis documents the design. validation. and demonstration of a simulation mode] for the instream otlload of vehicles from a Roll
On/Roll OfY ship. The model is an object-oriented. discrete event simulation wntten in MODSIM I1. The objective is to design and
demonstrate a model that can accurately estimate throughput times for the total offload of a vessel instream using various mixes of
lighterage With this tool. Logistics Over The Shore (LOTS) planners will be better able to estimate throughput and possibly tailor therr
mix of lighterage to a given set of fixed parameters.

14. SUBJECT TERMS Object-Oriented. 1 OTS. J1.OTS. Logistics. Simulation. MODSIM 15 NUMBER 021-5}£AGF.S
16 PRICE CODY
17.SECURITY 1R SECURITY 19. SECURITY 20.LIMITATION OF
CLASSIFICATION OF CLASSIFICATION OF THIS CLASSIFICATION OF ABSTRACT
REPORT PAGE ABSTRACT UL
|[Unclassiﬁed Unclassified Unclassitied
NSN 7540-01-280-5300 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

Approved for public release; distribution is unlimited.

An Object-Oriented Logistics Over The Shore Simulation: An
Aid in Throughput Estimation

by
Jack S. Noel II
Lieutenant, United States Navy
B.S., United States Naval Academy, 1985

Submitted in partial fulfillment of the
Requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH
from the

NAVAL POSTGRADUATE SCHOOL
September 1993

Author: (//jZL/éégsz;:;;——;7>
%ickds/ Noel ,II
Approved By: Zfi/// w4¢@{/

wWilliam G. 'Remp e, is Advisor

‘Peter Purdue, Chairman
Department of Operations Analysis

ii

This thesis documents the design, validation, and
demonstration of a simulation model for the instream offload
of vehicles from a Roll On/Roll Off ship. The model is an
object-oriented, discrete event simulatior written in MODSIM
II. The objective is to design and demonstrate a model that
can accurately estimate throughput times for the total of-
fload of a vessel instream using various mixes of lighter-
age. With this tool, Logistics Over The Shore (LOTS)
planners will be better able to estimate throughput and
possibly tailor their mix of lighterage to a given set of

fixed parameters.

DTIC QUALITY INSPECTED 8

Aacession For

[8¥Is oRa&l T4

PTIC T~B a
Ununisouwnaad a
Juyt o At R e

By —

| Dlesrcbattoy
| Aeailebirity Jolgs
: ikva il medyer
Dist | Spestal

g

ijii

TABLE OF CONTENTS

INTRODUCTION. . ..ttt ittt seeeancenssssnsoseenassassennnas 1
A. THE IMPORTANCE OF LOTS.t iiittntnrtiteeennns 1
B. GENERAL DESCRIPTION OF A LOTS OPERATION........... 3
C PROBLEM.ttt tutnnesnonsonsosseesssesannnans 4
D PROPOSALttt ittt it iaassssosssessnacsanananas S
THE LOGISTICS OVER THE SHORE OPERATION................ 7
A. OVERVIEW OF THE LOTS OPERATION.ccieeecunn. 7
B. ROLL ON / ROLL OFF SHIP.titvteeeennennnnnn 11
C. LIGHTERAGE.ttt itteneeseroessssnssssscsosssoes 12
1. LCU 1466, 1610, and 2000 Class............... 12
2. Logistics Support Vessel (LSV)............... 13
3. Causeway Ferry (CWF)cciiiieiennnnn.. 15
D. RO/RO DISCHARGE FACILITY (RRDF)ovivnnunn 15
E. BEACH DISCHARGE FACILITIEBS.... ... ittt eveovennnn 17
1. Bare Beach Operations............cccue.vuuan 17
2. Floating Causeway Pier Operations............ 18
3. Elevated Causeway Pier Operations............ 18

iv

III. THE MODEL. ittt ittt iteossencnaeennnn 20

A BACKGROUND.ttt ittt iieneeeaeacenacnannssans 20
B ASSUMPTIONS.ttt ittt eosnasensnesaaconas 21
C SHI PSS . . . i ittt ittt estoessensesesscenansananss 22
D LIGHTERAGE CONTROL POINTS.ttt irecnnennn 25
E BEACH AREAS ittt it itinscsoeaoaanannanescans 25
F REFUEL ARBA.ttt it teeetossenenenassannnsns 26
G LIGHTERS ittt ittt tnseesssaaeasceanaseenssss 27
1. Approach and Moor to Ship.................... 28
2 Onload.ttt ittt 28
3. Cast and Clear the Ship...................... 28
4. Transit to the Beach Area Queue.............. 29
5. Approach and Moor to Beach................... 29
6. Offload........ ..ot iiiiiiiiiiiiiiiiinennnans 30
7. Refueling.............iiiiiiiniiinninannennn 30
F. MODEL EBXECUTION. ¢ttt eeeeeossossossscenonsass 32
1 5 ¢} o1 5 R 32
2 Object Building........... ..., 32
3 Replication...........iiiiiiiiininneancnnnns 33
4 1 15 o 1 o 33

IV. ANALYTICAL PROCEDURES.ttt tttiinrtnennnnnnns 34

A. BACKGROUND.tteeteetnosenseosacassnaasnssnss 34

B. LIGHTER CYCLE EVENT TIMES..........0 0t eeeennans 35

c ANALYS IS ittt s tateeeeeceeossanosssssannsans 38

1. Validation Scenario...............o 39

2. Validation Analysis..........ceuiuenerneeennn. 40

3. Demonstration ScenariosS...............cc0.00.. 43

4. Demonstration Results.................cocoo... 45

V. CONCLUSTIONS ittt ietsseeasosnnsosannsasssssnsnnnsass 52
A, CONCLUSIONS.::ctveesonssessnoesscsncssssansas 52

B. RECOMMENDATIONS. ittt tieerecnsannnonnensoens 53

LIST OF REFERENCES.ttt teeosecresssescsosnonsnsssosas 54
BIBLIOGRAPHY i ittt it tesveesnensosonncesaesssnnsennnanas 56
APPENDIX A LIST OF ACRONYMS.t ittt iniennsnsnnennenn 58
APPENDIX B OBJECT-ORIENTED SIMULATION PICTURES........... 59
APPENDIX C RO/RO OFFLOAD MODEL SOURCE CODE........c..0... 81
APPENDIX D SAMPLE INPUT FILES....... ..ttt ttitescensocanas 227
APPENDIX E SAMPLE OQUTPUT FILES..... ..ttt ttttoeannesesnnsn 236
INITIAL DISTRIBUTION LIST..... ittt teestonnnessnsssanonsas 240

EXECUTIVE SUMMARY

Responding to the collapse of the Soviet Union, the U.S.
military is shifting its focus from global war and land
combat in Europe to regional contingencies in the third
world. This new role of the U.S. military will require more
flexibility and speed than has ever been required
previously.

Responding to the potential requirements to conduct
contingency operations in highly varied geophysical and me-
teorological conditions, the DoD has developed the Logis-
tics Over The Shore (LOTS) system as an alternative to the
modern port.

LOTS is an integrated system of equipment, personnel,
and procedures used to load and unload ships without the
benefit of fixed port facilities, in either friendly or un-
defended territory. It is designed to provide the
flexibility U.S. forces will need in the austere environ-
ments that they are likely to encounter. LOTS operations

may be conducted over unimproved shorelines, through fixed

ports that are not accessible to deep draft shipping, and
through fixed ports that simply lack the facilities for ef-
ficient offload without LOTS capabilities. The most in-
volved form of LOTS, and the focus for this thesis, is the
offload of equipment and cargo over an unimproved shoreline,
or instream offload.

A basic problem facing military planners is that they
currently have no comprehensive means of estimating the
throughput capability of an operation for various mixes of
oceangoing ships, lighters, and material handling equipment.

The objective of this thesis was to build an Object-
Oriented computer simulation model in MODSIM II that esti-
mates the throughput capability of an instream vehicle dis-
charge operation from a RO/RO type vessel. The model used
to generate these planning factors serves as a computer-
based decision aid wherein the input can be modified to al-
low a planner to experiment with various combinations of
equipment and shipping configurations.

To ensure that the simulation model performed as re-

quired, a two phase process was used to first validate, and

viii

then demonstrate the model. The validation phase consisted
of running the model using a real world scenario for which
the empirical offload time was known, and then comparing the
two. After 300 replications, the mean offload time from the
model compares well with the empirical offload time for the
same scenario.

The second phase was to demonstrate the model. A four
point design space was devised where the variables were a
high and low mix of lighters at short and long distances
from the beach. As would expected be when comparing the
results of these four scenarios, the high mix of lighters
had a significantly shorter offload time than the low mix,
and the short distance scenarios had shorter offload times
than the long distance scenarios.

In summary, the model is valid for estimating RO/RO in-
stream offload times within the confines of the assumptions

made in the modeling process.

ix

I. INTRODUCTION

A. THE IMPORTANCE OF LOTS

Responding to the collapse of the Soviet Union, the U.S.
military is shifting its focus from global war and land
combat in Europe to regional contingencies in the third
world. Force sizes are being reduced and fewer units will
be forward deployed. The U.S. will depend heavily on airlift
and sealift to achieve rapid response. This new role of the
U.S. military will require more flexibility and speed than
has ever been required previously. For its part, the U.S.
Navy has shifted focus towards littoral warfare, and the
ability to project military power in the worlds coastal re-
gions is gaining in importance.

Military and commercial airlift have been relied upon

heavily in the past to achieve a rapid build up of forces

and will remain a key asset. Airlift alone has never been
able to transport more than a small fraction of the required
assets, however, and with fewer land-based, forward deployed

forces, the demand for airlift will be far too large for a

reasonable number of aircraft to accommodate. Thus, sea
lift will play an ever increasing part.

The use of strategic sealift in the rapid deployment,
sustainment and re-deployment of forces overseas is essen-
tial in the execution of any US Department of Defense (DoD)
contingency operation. Due to the expense of acquiring and
maintaining large fleets of lift assets, DoD has turned in-
creasingly to the commercial sector to provide lift. The
positive aspect of this is increased cost savings for all
concerned, provided there is no actual contingency. One
negative aspect is that commercial shipping has grown
dependent on fully cellularized containerships. The large
modern port facilities normally required to offload com-
mercial vessels limits the flexibility of our military
forces. In the regional contingencies that are likely to
challenge U.S. forces in the future, flexibility is
essential.

Responding to the potential requirements to conduct
contingency operations in highly varied geophysical and me-

teorological conditions, the DoD has developed the

Logistics Over The Shore (LOTS) system as an alternative to

the modern port.

B. GENERAL DESCRIPTION OF A LOTS OPERATION

LOTS is an integrated system of equipment, personnel,
and procedures used to load and unload ships without the
benefit of fixed port facilities, in either friendly or un-
defended territory. It is designed to provide the
flexibility U.S. forces will need in the austere environ-
ments that they are likely to encounter. LOTS operations
may be conducted over unimproved shorelines, through fixed
ports that are not accessible to deep draft shipping, and
through fixed ports that simply lack the facilities for ef-
ficient offload without LOTS capabilities. The most in-
volved form of LOTS, and the focus for this thesis, is the
offload of equipment and cargo over an unimproved shoreline,
or instream offload.

The LOTS transfer operation can be broken down into
three areas; the offload of roll-on/roll-off (RO/RO) ships
through a RO/RO discharge facility (RRDF), the offload and

transfer of containers from either a self-sustaining or a

non-self-sustaining containership, and the transfer of fuel
from an Offshore Petroleum Discharge System (OPDS). The
first two operations are the major concern regarding
throughput. For the third operation, once the OPDS is in
place, the throughput is a known quantity and is easily

controlled.

C. PROBLEM

A basic problem facing military planners and LOTS op-
erational commanders is that they currently have no compre-
hensive means of estimating the throughput capability of an
operation for various mixes of oceangoing ships, lighters,
and material handling equipment. The joint tactical publi-
cation regarding LOTS (Ref. 1] provides a limited set of
planning factors that would be useful to planners provided
that their mix of equipment falls within the limited scope
of these factors.

Conversations with personnel at the JLOTS Test
Directorate [Ref. 2] and personnel in the Logistics Direc-
torate of the Joint Staff [Ref. 3] revealed that there is a

pressing need for a comprehensive set of planning factors as

well as some sort of tool (e.g., a computer simulation mod-
el) that can be used by planners in the future to update
these planning factors as required.

Several computer based simulation models of LOTS opera-
tions have been developed, and the JLOTS Test Directorate
has some of these models in hand, but each of these simu-
lations is written in a different language, with its own
software and hardware requirements. The JLOTS Test Direc-
torate has found them difficult to comprehend and impossible

to implement as an actual functioning tool.

D. PROPOSAL

The limited set of planning factors currently available
in Joint Pub 4-01.6 [Ref. 1] is inadequate for the needs of
JLOTS planners. The objective of this thesis is to build a
computer simulation model that estimates the throughput ca-
pability of an instream vehicle discharge operation from a
RO/RO type vessel through an RRDF under various scenarios.
The model used to generate these planning factors will
serve as a computer-based decision aid wherein the input can

be modified to allow a planner to experiment with various

combinations of equipment and shipping configurations. As
equipment configurations change, and the availability of
lighterages varies, the model can easily be modified to re-
flect these updates.

Validation of the model will be accomplished by
compairing model results with real world figures for a known
scenario. Further, we will use four scenarios to illustrate
the capability of the model. These scenarios reflect a
range of situations that a LOTS planner may face and will
serve as instruction as to how the model may be employed.

This thesis is organized as follows:

Chapter Title/Description

I. INTRODUCTION.

II. THE LOTS OPERATION. This chapter provides a
brief description of a LOTS operation
instream offload, a description of the
typical environment, and a description of
the equipment used in the operation.

III. THE MODEL. This chapter provides a complete
description of the simulation model
including assumptions and input and output data.

Iv. ANALYTICAL PROCEDURES. This chapter
provides the origin for model event times and
a discussion of the results.

V. CONCLUSIONS. This chapter describes
conclusions and recommendations.

II. THE LOGISTICS OVER THE SHORE OPERATION

A. OVERVIEW OF THE LOTS OPERATION

Logistics over the shore involves loading and unloading
military or commercial ships in what would be considered
less than ideal circumstances. The operation could take
place instream or in port facilities that are either damaged
or in some other way lack the facilities typically required
to handle a modern ship. 1In the instream offload, the ships
are located anywhere from one to several miles offshore.
The cargo and vehicles are then loaded onto various types of
lighterage for further transfer over the beach to marshaling
areas. The vehicles and cargo then continue their journey
on land via the standard means. A LOTS system is composed
of the following basic components: [Ref. 1]

1. Seagoing cargo vessel

2. Off shore cargo discharge facility

3. Shallow draft lighterage

4. Shoreside discharge facility

The study of a LOTS operation can be subdivided into
four major areas; vehicle offload from a RO/RO type vessel,
container offload from either a self-sustaining or
non-self-sustaining container ship, break bulk offload, and
the bulk offload of liquids such as fuel and water. This
thesis is focused on the offload of vehicles from a RO/RO
type vessel, thus, the remainder of this chapter will be
limited to descriptions of this operation and the specific
equipment involved.

A typical RO/RO LOTS operation can best be illustrated
by describing what happens to the cargo as it moves from the
bowels of the seagoing vessel to the shoreside discharge
site. Figure 1 depicts the setup of some of the typical
LOTS components [Ref. 1]. On the beach side of the opera-
tion, discharge of cargo can be accomplished on a bare
beach, on an Elevated Causeway (ELCAS) or pier discharge
which could be either a floating causeway pier or the pier
in an unimproved port. Some of the different types of ves-
sels that can be off.ocaded using the LOTS system are also
depicted in Figure 1. The Non-self-sustaining container

(NSSC) ship would be offloaded using a crane ship (T-ACS),

the Roll On/Roll Off ship has a RO/RO Discharge Facility
lashed alongside, and the Maritime Prepositioned Ship (MPS)
is being offloaded using Lift On/Lift Off or LO/LO tech-

niques as well as providing fuel and water to the beach.

RO RO

T J RRDF

BEACH LANDING

[ce=wne
PIER DISCHARGE csp
L] e

Pigure 1l: The LOTS Operation

The offload of a RO/RC can be accomplished in two ways.
The first method is LO/LO operations in which vehicles and
cargo are craned off, either by the ships organic crane or
by a T-ACS crane ship. The second method is to use a RO/RO
Discharge Facility (RRDF) and simply drive the vehicles onto
the lighters. The lighters wait in queues near the ship for
an open discharge station. When a discharge station becomes
available the Ship Lighterage Control Point (SLCP) directs a
lighter alongside. The cargo or rolling stock is then
loaded aboard and the lighter casts off from the discharge
point to transit to the shoreside queue. At the shoreside
queue the lighter is directed by the Beach Lighterage Con-
trol Point (BLCP) to the first available discharge point.
The cargo is then discharged and proceeds to the marshaling
area. The lighter then departs the discharge point and
control is transferred from the BLCP to the appropriate SLCP
which will tell the lighter where to pick up its next load.
Several components exist to perform each of the tasks listed
above. They can operate in many combinations to perform the

basic LOTS functions. A description of the components

10

available and how they integrate into the overall system

follows.

B. ROLL ON/ROLL OFF SHIP

There are many classes of Roll On/Roll Off ships, but
they can be divided into two basic types for this analysis:
self-sustaining and non-self-sustaining. The major differ-
ence is that a self-sustaining ship has its own ramp for
vehicle loading and discharge. 1In typical commercial
operations a self-sustaining RO/RO would moor and lower its
vehicle ramp directly onto the pier to commence the offload
of vehicles. A ramp provided from port facilities would be
married up to a non-self-sustaining ship. 1In the instream
offload, an RRDF is assembled and moored alongside the ship,
and in the case of the self-sustaining vessel, the ships
ramp is then lowered onto the RRDF platform. 1In the case of
a non-self-sustaining ship, a 120 foot offloading ramp is
added to the RRDF. [Ref.1]

The introduction of sea state and current can signifi-
cantly affect the throughput capability of an offload. For

an offload using an RRDF, operation is limited to sea state

11

two and no more than four knots of current. The discharge
of vehicles can continue using LO/LO operations if the sea
state exceeds the RRDF's parameters somewhat. But LO/LO
operations are also limited in more challenging sea states
depending on the equipment and the ability of the crew. 1In
any case LO/LO operations are limited to sea states no

higher than three. [Ref. 4]

C. LIGHTERAGE

1. LCU 1466, 1610, and 2000 Class

The LCU is a conventional displacement vessel capa-
ble of transporting containers, breakbulk cargo, outsized
cargo, vehicles and personnel from the ship to the shoreside
discharge point. The 1466 and 1610 class are self-
sustaining once deployed to the theater in the sense that
they are fully equipped to support their crew once they are
delivered to the area of operations. The LCU 2000 class is
both self-deployable and self-sustaining. All three classes
are therefore capable of extended missions with endurance
based upon provisions and fuel capacity. All three LCU
classes are equipped with twin screws and a stern anchor, so
they can beach and retract under their own power. Cargo may

also be discharged from LCU's at a floating causeway pier or

12

—

an elevated causeway pier (ELCAS). For discharge at the
beach or to a floating causeway pier, rolling stock is
driven or towed off over the bow ramp of the LCU. 1If dis-

charge is accomplished at an ELCAS the cargo is craned off.

The characteristics of the three classes of LCU are listed

in Table 1. [Ref. 1]
TABLE 1. LCU CHARACTERISTICS
1466 CLASS 1610 CLASS | 2000 CLASS
CARGO CAPACITY
PAYLOAD 187 ST 187 ST 188 ST
SPEED MAX 8.0 kts 12 kts 12 kts
FULL LOAD 6.5 kts 11 kts 10 kts
RANGE 1200 nm 1200 nm 4500 nm
@ 6 kts @ 6 kts @11.5 kts
FUEL
CAPACITY 3542 GALS 3290 GALS]| 92000 GALS
BURN RATE 34 GPH 36 GPH 41 .6 GPH
DRAFT {LOADED)
FWD 3! 3+ 2n 4"
AFT 4" 6' 5" 9"

2. Logistics Support Vessel (LSV)
The Logistics Support Vessel is a large conventional
displacement watercraft capable of transporting large

amounts of cargo to almost any port in the world. Much like

13

a large LCU, the LSV can carry loads such as 11 Ml tanks, 21
M2 Infantry Fighting Vehicles, or 48 20-foot containers.

The LSV's are both self-sustaining and self-deployable.
LSV's are capable of beaching and retracting under their own
power, thus, providing the most basic means of discharge.
Cargo can also be discharged using a floating causeway pier
or an ELCAS. As with an LCU, the rolling stock is driven or
towed off in the first two cases, and craned off in the
third.

The characteristics of the LSV are listed in Table

2. [Ref. 5]

TABLE 2. LSV CHARACTERISTICS
Fcnao CAPACITY
PAYLOAD 2000 ST
SPEED MAX 11.6 kts
FULL LOAD 10.0 kts
RANGE 6500 nm
@ 11 kts
FUEL
CAPACITY 165,000 GALS
BURN RATE 146 GPH
DRAFT (LOADED)
FWD 6! i
AFT 6"
2:—_:%—_

14

3. Causeway Perry (CwP)

A causeway ferry (CWF) is assembled from Navy stan-
dard 90 x 21 foot causeway sections. From one to three
causeway section's non-powered (CSNP) can be coupled with a
causeway section powered (CSP) to form a ferry. The CSP
contains two waterjet propulsion assemblies that are capable
of propelling the loaded ferry from the ship to the shore-
side discharge point. The CWF is capable of beaching and
retracting under its own power as well as discharging at an
ELCAS using a crane. The causeway ferry is capable of
operating a full 10 hour shift without refueling. The
causeway sections are easily loaded aboard several types of
ships, and they are the basis for several major LOTS compo-
nents such as the Floating Causeway Pier and the Side Load-
able warping Tug in addition to the CWF. Figure 2 shows the

various configurations for a CWF. [Ref. 4]

D. RO/RO DISCHARGE FACILITY (RRDF)
The RRDF provides an interface between the sea going
vessels and the lighters for the offload of vehicles. The

RRDF itself is configured from six CSNP's in a three-wide by

15

two-long configuration to provide a platform for the offload
ramp, which may be either the ship's ramp for a self-
sustaining RO/RO, or part of the RRDF for a non-self-
sustaining RO/RO. Vehicles can be driven directly off of
the ships, onto the platform and onto either a causeway
ferry, an LCU, or an LSV. The RRDF is moored directly to
the ship and is helped maintaining its position by a Side
Loadable Warping Tug. Assembly and mooring of the RRDF is
limited to sea state 0-1 for a non-self-sustaining vessel
and from 0-2 for a self-sustaining vessel. The RRDF can,
however, be operated safely through sea state 2 in either

case. [Ref. 1]

w
.
-

" IGNATION

CONFIGURATION CEP PLLE 1 cse PLyUs 2 CSPF PLUs 3
csne CENP [L1

LENGTH (FT) 1870 271 kLIn

OVERALL WIDTH (FT) 21 21 2

CAPACITY £ 1< 1€
® VERIZLES)

Figure 2: Causeway Ferry Configurations

16

E. BEACH DISCHARGE FACILITIES

Several types of beach discharge methods may be employed
in LOTS operations. The use of one system over another
depends on the scenario at hand, the type of ship being
offloaded, the lighterage being employed, and most impor-
tantly, weather and surf conditions in the discharge area.
For the offload of a RO/RO type vessel, using causeway fer-
ries, LCU's, or LSV's, there are three basic beach discharge
methods: bare beach operations, causeway pier operations,
and elevated causeway pier operations. The factors that
influence the choice of each are listed below.

1. Bare Beach Operations

Throughput during bare beach operations are

primarily dependent on beach gradient and characteristics,
weather, wave height, and the beach consistency. The type
of cargo to be offloaded is also of concern since offloading
is done in the surf zone. The possibility of vehicles
stalling or being unable to gain traction is viable and must
be considered. 1In the typical offload of RO/RO type cargo

the vehicles would simply be driven or towed off of the

17

lighter onto the beach where they would then be directed to
a staging area. [Ref. 1)
2. Floating Causeway Pier Operations

A Floating Causeway Pier would normally be assembled
in the amphibious assault phase of an operation and remain
behind for the subsequent offload of the assault follow-on
echelon until the more permanent ELCAS could be installed.
Although RO/RO cargo is typically discharged directly to the
beach, the floating causeway pier provides a means for of-
floading a safe distance from the surf zone if it is re-
quired. A floating causeway pier is composed of 1 CSNP
(beach end configured), and 1 CSNP (sea end configured) with
the required number of CSNP's in between to meet the desired
depth at the sea end. Floating causeway piers are capable
of operating in wave height of 4 feet and a lateral wind
force of up to 40 knots with a 3 knot current.

3. Elevated Causeway Operations

The ELCAS allows containers, break bulk cargo and
vehicles to be discharged without contending with the surf
zone. ELCAS is a rapidly installable pier facilityvthat can

be extended up to 3000 feet beyond the surf zone to provide

18

mooring for any type of military lighter or commercial
barge. The amount of roadway actually installed depends on
what is required to meet the 12 foot depth requirement at
the pierhead. The pierhead of the ELCAS is double width (72
feet) and equipped with two air-bearing turn-tables and two
180-ton cranes. The ELCAS would be installed with the ar-
rival of the first container ship. RO/RO cargo is normally
discharged on a bare beach, but can be discharged at the
ELCAS if the vehicles are within the weight limits of the
crane used on the ELCAS. Weight limits preclude the offload
of such vehicles as tanks and large, heavily loaded trucks.
This equipment and its characteristics discussed in the
preceding sections must be faithfully modeled in the simu-
lation to ensure that the output is reasonable and reliable.
The following chapter is a thorough description of the RO/RO

Offload model and how this was accomplished.

19

III. THR MODEL

A. BACKGROUMD

We develop the RO/RO Offload simulation model to analyze
throughput for the RO/RO portion of an instream LOTS opera-
tion. The model was written in MODSIM II, an Object-
Oriented simulation language. MODSIM II "is a general-
purpose, modular, block-structured high-level programming
language which provides direct support for object-oriented
programming and discrete-event simulation." [Ref. 6:p. 1]
The prime elements of the RO/RO Offload model are created as

objects.

Objects in MODSIM are dynamically allocated data

structures coupled with routines, called methods. The
fields in the objects data structure define its state
at any instant in time while its methods describe the
actions which the object can perform. [Ref. 6:p. 103]

As an example, an LCU 2000 class lighter is modeled as a
lighter object, possessing the attributes that are unique to
that class such as cargo capacity, speed, fuel capacity, and
fuel burn rate. The fuel on board the individual lighter
decrements as time passes by a method within the lighter

object called BurmnFuel. All of the objects within the

20

simulation interact to pass time in a realistic fashion so
that statistical data may be gathered for later analysis.
We model all of the components necessary to perform the
RO/RO portion of an instream LOTS operation. The objects
are generic enough so that any changes in the number and
type of ships, beaches, or lighterage, can be modified in
the model by simply changing the input files. The key ob-
jects in the RO/RO Offload model are described in the sec-
tions that follow. Figure 3 is a pictorial representation
of the objects in the model which correspond to the follow-

ing descriptions.

B. ASSUMPTIONS
Several assumptions were required in order to define and
narrow the scope of the simulation model. The assumptions

are:

1. Weather is not a factor in the simulated offloads.
In real world operations LOTS is limited in practice
to sea states of two or below.

2. O"nme ship is offloaded at a time.

3. All lighters are dedicated to the offload of one
ship.

4. There are no breakdowns in equipment.

21

5. Serials are prepared aboard the ship prior to the
arrival of the lighter. 1In other words, the
vehicles are standing by for onload when a lighter
arrives.

6. Lighters can perform operaterations simultaneously.
More than one lighter can onload at the same time,

several lighters may transit simultaneously,
and so on.

C. SEIPS

As discussed in Chapter II of this thesis, the oceango-
ing vessels that transport vehicles to the offload area in a
LOTS operation are RO/RO's. The object within the RO/RO
Offload model that represents these vessels is the RoRoObj.
The actual movement of the RO/RO to the Area of Operations
(AOR) is not modeled in the simulation because the question
to be answered is throughput in the offload phase, there-
fore, simulation starts with the ships on station. The
dominant effect the RO/RO has in this phase is the number of
spots the vessel has available for onload to a particular
type of lighter, and whether or not the RO/RO is self-
sustaining. Additionally, some classes of ships are parti-
tioned internally so that portions of the cargo can only be
handled by a specific spot, which limits the number and type

of lighters available to offload that cargo. These aspects

22

of a particular class of RO/RO can be modeled simply by
changing the input files for each vessel desired in a par-
ticular scenario.

The RoRoObj possesses a method called MakeLoad which
actually constructs the serials based on the maximum
capacity of a given lighter. The number and type of spots
for a ship are input variables. For example, a RO/RO
configured with an RRDF and one organic crane has one LO/LO
spot, one CWF spot on the RRDF and one LCU spot on the RRDF.
The LO/LO spot is usually on the opposite side of the vessel
from the RRDF, and can accept both CWF's and LCU's. As an
example of a partitioned load, the aft portion of the Algol
(SL-7) class Vehicle Cargo Ships can only be offloaded by
LO/LO operations and can contain up to 60 vehicles. The
MakeLoad method keeps track of these 60 vehicles and ensures
that they decrement appropriately when onload of a lighter

is conducted at the LO/LO spot.

23

LCU Conducting
] «LoLo Ops

RoRoObj
< RRDF
[LighterODbj
] CSNP
. o
Awaiting L Lcurisv

W aitingFo

/@B_eich FloatingCWPTe
~ /

BeachObj

RefuelAreaQbj

Figure 3: The Object-Oriented Approach to LOTS

24

D. LIGHTERAGE CONTROL POINTS

The Lighterage Control Points serve as the interface
between the queue in which the lighters wait for an avail-
able spot at a particular location, and that location. For
example, the Ship Lighterage Control Point (SLCP) interfaces
between the lighters waiting for a spot at the ship, and the
ship itself. There are three Lighterage Control Points
modeled in the RO/RO Offload model. 1In addition to the
SLCPObJj, the BLCPObJ] interfaces with the Beach objects, the
FuelCPObJ interfaces with the refueling area objects, and,
each interfaces with it's respective queue. Each of the
modules in which the Lighterage Control Point objects are
defined also has the definition for the associated queue
object, such as the AwaitingShipQueueObj. The queue objects
actually hold the lighter objects until a spot opens up at

the associated location.

E. BEACH AREAS
Typically the offload of rolling stock in the beach area
consists of starting the vehicles up and driving them away.

The one exception to this rule is when an ELCAS is in use

25

and vehicles are lifted from the lighters. The RO/RO Of-
fload model provides for three beach types: bare beach,
floating causeway pier, and ELCAS. Each instance of a Bea-
chobj in the model, however, only varies in the number of
spots available for lighter offload. The spots are not
unique to a particular type of lighter, but if this attrib-
ute were desired it would entail only a minor modification
to the source code. The BeachObj has within it a method
which keeps track of the time that the spots lay idle for

later analysis.

F. REFUEL AREA

The refueling area in a LOTS operation is typically a
shore site equipped to refuel the lighters. Each of the
lighters is normally capable of operating for a minimum of a
ten hour shift without refueling, but the time to transit to
the refueling area and to refuel can add a significant
amount of variance when looking at throughput.

The refueling area, modeled as a RefuelAreaObj, has two
attributes which affect simulation time; the number of spots

available for refueling and the pump rate. Both of these

26

attributes can be modified in the input files. One other
factor affecting the refueling operation is the distance of
the refueling area with respect to both the ship and the

beach. These are also input parameters.

G. LIGHTERS

The LighterObj is the key object in the RO/RO Offload
model in that it alone contains the methods which control
the passage of simulation time for each of the events mod-
eled. Each instance of a lighter object has its unique at-
tributes such as speed and cargo capacity that will come
into play when the time required for a given event to pass
is calculated.

The basic lighter cycle consists of eight events, each
of which is associated with a method in the LighterObj to
control the passage of simulation time. During each of
these events, as well as the time spent in the queues, the
lighter burns fuel. The eight events in the basic lighter
cycle are described below. A pictorial description using
object-oriented simulation pictures (00S-Pics) [Ref. 7] can

be found in Appendix A.

27

1. Approach and Moor to Ship
At the beginning of simulation all lighters are in
standby in the AwitingShipQueue. When a ship has a free
spot, it asks the SLCPObJ to remove a lighter requiring the
appropriate spot type from the queue. The SLCPObJ then
tells the lighter to Approach And Moor, thus initializing
the lighter cycle. The approach and moor time is calcu-
lated, the simulation time is allowed to pass, and fuel is
burned for that period of time.
2. Onload
After the lighter completes the approach and moor
event, it asks the ship to MakeLoad, which causes the Ro-
RoObjJ to create a load and decrement the total onboard the
ship appropriately. The ship next tells the lighter to on-
load. The LighterObj calculates the onload time, passes the
correct amount of simulation time, burns fuel, and tells
itself, the lighter, to cast off and clear the ship.
3. Cast and Clear the Ship
The cast and clear event is similar to the other two
described above in that the cast and clear time is calcu-

lated and allowed to pass, and fuel is burned. After the

28

lighter completes the cast and clear event it transits to
the beach area queue. The ship is next asked to clear the
spot just used. This frees it for use by another lighter and
starts that lighter's cycle.

4. Transit to the Beach Area Queue

As a lighter transits to the beach area it asks the
BLCPObj] to get a beach spot for offloading. The BLCPODJ in
turn asks each of the beach objects in the scenario if there
are any spots free. If there is a free spot, the lighter is
told to approach and moor to the appropriate Beachabj. 1If
there are no spots available the lighter is added to the
AwaitingBeachQueue.

The TransitTo method in the model calculates the
transit time based only on speed and distance. This is
different from the other events in the cycle where the event
times are drawn from random number streams.

5. Approach and Moor to the Beach

Approach and moor at the beach is identical to that
on the ship with the exception that the lighters spot re-
quirement is not checked, any lighter type can moor to any

beach type. 1If a spot becomes free at the beach and a

29

lighter does not happen to be in transit and requesting a
spot at that exact moment, the beach asks the BLCPObJ to
remove a lighter from the queue. The BLCPObJ then tells the
newly removed lighter to approach and moor.
6. Offload

Upon completion of the approach and moor event the
lighter is told to officad. Offload time is calculated,
simulation time is allowed to pass, and fuel is burned.
After completion of the offload, the fuel status of the
lighter is checked. If the lighter is at or below the spe-
cified minimum fuel percentage it is told to cast and clear
the beach and transit to the refueling area. If the fuel
status is above the minimum the lighter is told to cast and
clear the beach and transit to the ship area. These two
events are the last two of the eight in the basic lighter
cycle. They are essentially the same as the like named
events above, so a detailed description is not required.

7. Refueling

The basic sequence of events is modified slightly if

a lighter requires fuel. As mentioned above, after a

lighter completes its offload, a check is conducted to

30

determine if the lighter is at or below its minimum fuel

percentage. If the lighter is low on fuel it casts and
clears the beach and transits to the refueling area. On the
way to the refueling area the lighter checks in with the
PuelCPObJ, which asks the RefuelAreaoObj to check for empty
spots. 1If there is a spot available the lighter is told to
approach and moor. If not, the lighter is added to the
FuelAreaQueue and waits for a spot to open up. After a
lighter completes the approach and moor event it is told to
refuel. Refuel time is calculated based on the fuel re-
quired to fill the lighter to capacity and the pump rate of
the RefuelAreaObj. When refueling is complete, the lighter
is told to cast and clear and transit to the ship area. The
spot in the RefuelAreaoObj is made free and the FuelCPObJ is
asked to remove the next lighter from the queue.

After the lighter arrives back in the ship area
queue, the cycle starts anew with the lighter waiting for a
spot to become free on the ship. Each instance of a Ligh-
terObj conducts these events until the offload of every

RO/RO in the simulation is complete.

31

H. MODEL ERXECUTION

There are four phases in the execution of the RO/RO Of-
fload simulation. A brief description of these phases and
the objects involved in their execution follows.

1. Input

The information required to create a desired

scenario is stored in eight ASCII files. These files are
easy to create and edit. The ListMasterObj has the task of
creating the necessary objects to read these files and to
call the methods that actually read the data. The informa-
tion for each object to be built is stored in a record, and
then added to a QueueListObj. Examples of program input
files can be found in Appendix D.

2. Object Building

The ObjectBuilderoObj creates each instance of the

objects required for the scenario. It removes the records
from the QueuelList objects mentioned above, and fires a
method in each object that fills that objects fields with
the information from the record. The end result of this
phase is that all of the objects required to run the desired

scenario are built and standing by for replication. All of

32

the lighter objects will have been added to the Awaiting-
ShipQueue and are standing by for the RoRoObj to request the
first lighter to fill a vacant spot.
3. Replication
Replication is controlled by the replication manager
object or RepMngrobj. A method in this object asks the user
how many replications are desired and if seeds for the ran-
dom number generators are to be input by the user. At the
end of each replication the desired statistics are computed
and all of the lighters in the scenario are added to the
AwaitingShipQueue in preparation for the next replication.
4. Output
Output is created in the Statistics object or Stat-
80bj. A method in this object is called after the last load
from the ship has been transferred to the beach, and all of
the lighters are returned to the AwaitingShipQueue. This
method calculates the desired statistics and outputs them to
four ASCII files. Appendix E contains examples of program

output files.

33

IV. ANALYTICAL PROCEDURES

A. BACKGROUMND

In order to ensure that the output from the simulation
model is reliable and correct, two steps must be accom-
plis ed. First, the model must be verified to ensure that
it is mathematically correct. This essentially involves the
checking and double checking of any equations, or input
distributions used to determine event times in the model.
The second step is validation of the model which, determines
if the output is realistic and if the output is in fact what
is required. In other words, does the simulation model
provide reliable output data of the desired parameters.
This two step process is the first phase in the analysis of
the RO/RO Offload model.

The second phase in the analysis is to demonstrate the
possible applications of the model. This is done by
selecting a set of scenarios, running them through the
model, and analyzing the output.

The following sections document the verification, val-

idation, and demonstration of the RO/RO Offload simulation

34

model subject to the constraining assumptions listed in

Chapter III.

B. LIGHTER CYCLE EVENT TIMES

In determining the times for each of the lighter cycle
events the primary objective is to obtain the most current
data available. Several sources were available that pro-
vided mean times and distributions for each of the events in
the lighter cycle, but no one set of data provided both the
accuracy and latitude that was required for the model. The
final set used in the model is a mixed set derived from all
of the sources available, coupled with some common sense
decisions, to provide the best event times for this simu-
lation model.

There are two capabilities in the RO/RO Offload model
that required some flexibility in determining the event time
distributions. The first is the capability to differentiate
between self-sustaining (SSR) and non-self-sustaining (NSSR)
RO/RO's. The second feature is that ships can be given the
capability of LO/LO operations. Two additional area's that

required flexibility are transit times, and refueling times.

35

Because the model allows the user to input the distances
between the ships, beaches, and refueling area's, the tran-
sit times between area's are calculated based solely on
speed and distance. This allows the user to place these
area's at any distance relative to each other. Refueling
times are also deterministic, based on the amount of fuel to
be pumped, and the pump rate. The following table lists the

times, distributions and source for each event.

TABLE 3. LIGHTER CYCLE EVENT INPUT DATA

LIGHTER CAUSEWAY FERRY Lcu
CYCLE
EVENT PROB DIST | MEAN/RNG | STD | PROB DIST | MEAN/RNG | STD
APPROACH & MOOR SSR NORMAL 10.5 (3) 3.2 NORMAL 14.3 (3) 2.2
mssr | NORMAL |, (2)| 3-2 NORMAL 14.3 (3) 2.2
OPERATIONAL DELAY 1 NORMAL 2 (1) 0.7 NORMAL 2 (1) 0.7
ONLOAD SHI1P 88R NORMAL 16 (3) 3.9 NORMAL 15.9 (3) 3.9
NSSR NORMAL 25 (2) 3.9 NORMAL 18 (2) 3.9
OPERATIONAL DELAY 2 LOGNORMAL | 1.2 (1) 1. NORMAL 1 (1) 0.3
CAST & CLEAR SHIP 88R NORMAL 5 (3) 1.3 UNIFORM 2-2.5 (3) NA
NKSSR NORMAL 4 (2) . 1.3 UNIFORM 4-6.5 (2) NA
TRANSIT TO BEACH DETERMINISTIC DETERMINIBTIC
APPROACH & MOOR NORMAL 17 (1) 3.4 NORMAL 11 (1) 4.29
OPERATIONAL DELAY 3 LOGNORMAL | 1 (1) 0.9 UNIFORM 1-3 (1) NA
OFFLOAD AT BEACH NORMAL 10 (1) 3.4 NORMAL 3 {1) 0.8
OPERATIONAL DELAY 4 UNIFORM 0-1.5 (1) NA NORMAL 1 (1) 0.3
CAST & CLEAR BEACH NORMAL 9.9 (1) 1.8 UNIFORM 1.8-3 (1) RA
TRANSIT TO SHIP DETERMINISTIC DETERMINISTIC
s a. All values are in minutes.
b. Onload and Offlocad times are in minutes per vehicle.
SOURCES: (1) Ref. 8: p49. Note: All 8TD's and distributions come from this reference.
(2) Ref. 8: p34. Jote: Allows differentiation between 8SR and NSSR ships.
(3) Ref. 9: p6-18 Note: Moet current data available for these events.

36

TABLE 4. LIGHTER CYCLE EVENT INPUT DATA

LIGHTER CAUSEMWAY FERRY LCU
CYCLE
EVENT PROB DIST | MEAN/RNG | STD | PROB DIST | MEAN/RNG STD
TRANSIT TO REFUEL AREA DETERMINISTIC DETERMINISTIC
APPROACH & MOOR NORMAL 17 (1) 3.4 NORMAL 11 (1) 4.29
OPERATIONAL DELAY 3 LOGNORMAL | 1 (1) 0.9 UNIFORM 1-3 (1) NA
REFUEL DETERMINISTIC DETERMINISTIC
CAST & CLEAR REFUEL AREA NORMAL [9.9 (1)] 1.8 UNIFORM 11.0-3 (1) NA
TRANSIT TO SHIP DETERMINISTIC DETERMINISTIC
t a. All values are in minutes.
b. Refuel Area is located at a beach or shore site, therefore it is treated as a
beach for simulation event times.
SOURCES: (1) Ref. 8: p49. Mote: All STD'e and dietributiones come from thie reference.

Two additional notes on event times that are not re-
flected in the tables. The first is that an LSV is treated
as an LCU with regard to event times. Since an LSV moors to
the RRDF at the LCU spot, and is similar in most ways to an
LCU, this is not regarded as a risky assumption. This as-
sumption was further required because no data was available
for the LSV event times. The second thing to note is the
offload time at the LO/LO spot if the RO/RO being simulated
is so configured. The event time for a LO/LO offload is
normally distributed with a mean of 10.25 minutes per ve-
hicle and a standard deviation of 5.75 minutes per vehicle.

These values are a composite based on data obtained in CRM

37

91-3, [Ref. 10], and data from Joint Pub 4-01.6, [Ref. 1].
The standard deviation for the LO/LO offload time as well as
three other event times is actually too high for the normal
or lognormal distributions. In a simulation run, a small
percentage of the numbers drawn from the random number
streams in these cases would be negative. This would cause
a fatal error in the program, thus, these numbers are con-
verted to positives. As a result, the distributions
actually used in the model are truncated and slightly skewed

to the right of those described.

C. ANALYSIS

The analysis of model output is divided into two parts.
The stated goal of this thesis is to provide a valid simu-
lation model from which reliable estimates of throughput can
be derived for the instream offload of a RO/RO. The first
objective is to validate the simulation model, thus ensuring
that it does in fact provide reliable throughput estimates.
Step two is to demonstrate the use of the model using four

scenarios and evaluating the output.

38

1. Validation Scenario
Validation of the RO/RO Offload model was accom-

plished by taking a real world offload scenario for which
all of the parameters required by the model were known.
These parameters were loaded into the model via the input
files. The RO/RO Offload model was then run for 300 repli-
cations and the output was compared with the existing
empirical data. The operation selected for validation was
actually conducted during Ocean Venture '93. The following
tables list the input values for the model. For examples of

input files in the correct format, see Appendix D.

TABLE 5. VALIDATION SCENARIO INPUT DATA

SHIP DATA REFUEL AREA DATA
NAME BELLATRIX NAME FUEL DEPOT
TYPE 88R # OF 8POTS 2
DIST TO BCH 6 nm DIST TO SHIP 6 rm
OF SPOTS 3 PUMP RATE 3500 GPH
8POT TYPE LCU, CWF, LOLO
VHCLS LOLO 60
VHCLS RRDF [+]
VHCLS ANY SPOT 834
t a. # VHCLS LOLO indicates the number of vehicles in the
load that can be lifted from the LOLO spot only.
The Bellatrix, an SL-7 claees, has a partitioned load
and 60 vehicles must be offloaded by LOLO.
b. Data provided by Joint Test Directorate [Ref. 11]).

39

TABLE 6.

VALIDATION SCEMARIO INPUT DATA

LIGHTER DATA

LCU 2000, LSV, and 3 x 1 COWF provided by Joint Test
Directorate [Ref. 11].

LIGHTER 1D ALFA - ECHO FOXTROT - OOLF HOTEL INDIA - LIMA
TYPE LCU 2000 LCU 1610 L8sv 3 X1 CQwr
IN SCENARIO 5 2 1 4
SPOT REQUIRED LcuU o LCU CWF
MAX SPEED 12 kts 12 kts 11.6 kte € kts
FULL LOAD SPEED 11 kte 11 kte 10 kte 3 kte
VHCLE CAPACITY 11 4 25 16
FUEL CAPACITY 92000.0 QAL 3290.0 GAL 165000.0 GAL 275.0 GAL
FUEL BURN RATE 41.6 GPH 36.0 GPH 145.8 GPH 20.8 GPH
MIN FUEL & 0.25 0.25 0.25 0.25
INOTES: a. Fuel capacities, Burn rates, and vehicle capacities for the

TABLE 7. VALIDATION SCENARIO INPUT DATA
BEACH DATA 1
NAME SOUTH ARMY NAVY ADMIN
TYPE BARE BEACH | CAUSEWAY PIER | CAUSEWAY PIER | CAUSEWAY PIER
% OF SPOTS 2 2 1 1
DIST TO SHIP 6 nm 6 nm 6 nm 6 nm *
DIST TG FUEL 6 nm 6 om 6 nm 6 nm]

nmu: a. Data provided by Joint Test Directorate [Ref. 11].

2.

The approach employed in this thesis for model val-

Validation Analysis

40

tistics from the model with those from real world

idation is the basic inspection approach [Ref. 12: p. 316].

This procedure involves the comparison of one or more sta-

observations. For this model the total offload time for the
ship in the given scenario will serve as the statistic for
comparison. Although the RO/RO Offload model collects data
for the idle time at each of the ship and beach spots in the
scenario, as well as the time spent in the AwaitingShipQueue
and AwalitingBeachQueue, there currently is no empirical data
with which to compare it.

The RO/RO Offload model is a terminating simulation
[Ref. 12:p. 529]. That is to say that each replication of
the simulation runs until a terminating event occurs, name-
ly, the complete offload of the ship in the given scenario.
Since different runs use an independent sequence of random
numbers for the individual event times, this implies that
the output realizations from the different runs are

independent as well. Specifically, total offload time for

the ship in our scenario. Calculating the mean_}:}ﬂj),
where X is the independent total offload time for a single
simulation replication, serves as a reliable point estimate
for the comparison. If X,, X, ...,X, are the independent,

realizations for offload times of n replications, then the

mean is simply: A= E X)n

41

As noted previously, the validation run of the model
consisted of 300 replications. The output is in ASCII for-
mat, examples of which can be found in Appendix E. The
output was loaded into SPSS [Ref. 13], and some basic
graphical analysis was conducted. Output times from the
model are expressed in minutes, and the real world observa-
tions are generally expressed in hours or days, therefore,
some simple conversion is required. The results for the

validation are presented below in Figure 4.

JLOTS Il]
Bellatrix Officad Scenario
12 Lighters, 6nm from Beach
40+
304
208
10¢4= Std. Dev = 407 .22
Mean = 4703 2
___IN=30000
(«n%ﬁh%f“%Quwiubﬁmoﬁmo&mo%mo%momqm&“%
Offioad Time in Minutes

e — —

Pigure 4: Histogram of Bellatrix Offload Scenario
Compared to Normal Distribution.

We expect our offload time data to be slightly

skewed to the right since offload time is bounded by zero on

42

the left. This is confirmed by Figure 4. Nevertheless, we
rely on the central limit theorem and the robustness of
procedures based on the t-distribution to build a 99%
confidence interval for the mean offload time using the 300

simulated observations.
X +za2(5/ /M) = 47032 £ 2.576(407.22/ /300) = [4642.63,4763.76]

This interval expressed in hours is [77.37, 79.39].
The empirical mean, 79.2, clearly falls within this confi-
dence interval which lends credence to our claim that the
RoRo Offload simulation model provides reliable estimates
for throughput.

3. Demonstration Scenarios

In order to fully exercise the simulation model, a
design space consisting of four scenarios was selected.
There are many factors which could be varied to determine
the effect on total offload time, but the two most obvious
variables are the number of lighters, and the distance of
the ship from the beach. The objective is to stress the
model, thus, the values for these variables could be

considered extreme cases that are not likely to be

43

replicated in the real world. The four scenarios are, a
large number of lighters at both long and short distances,
and a small number of lighters at both long and short dis-
tances. In choosing the number of lighters, some
experimental runs were conducted to ensure that the queues
in the model were behaving as desired. Aside from the num-
ber of lighters, and the distance between ship and beach,
all other variables were held constant. The data used in
the validation scenario listed in tables 5, 6, and 7 were
used with the exception of distances, and lighters. The
number of beaches was reduced to two, the south beach and
the admin pier. The number of beaches was reduced to help
obtain the desired behavior in the queues. Figure 5 depicts

the design space for the demonstration.
f

16

900 Reps 900 Reps

NUMBER OF LIGHTERS

900 Reps 900 Reps

1nm 6nm
DISTANCE

Pigure 5: Demonstration Design Space

44

4. Demonstration Results
Graphical techniques were employed to analyze the
data from the four demonstration scenarios. The model was
run for n = 900 replications for each case. Figure 6 de-

picts the results from the four runs.

Bellatrix Offioad
Four Demonstration Scenarios

160

]
m 140
e

120
i
n 100 Mean = 10513.2
h 800 Mean = 7606.

M

]

n 600

u

t é I illl Mean = 4330.9

e 400 Mean = 3781.1
S

2004 I 1
16 6 16-1 5-1

Number of Lighters - Distance from Ship to Beach(nm)

i
{
i

Figure 6: Boxplots of Results from Demonstration Scenarios

Each of the four boxplots above depicts the results
from one of the four scenarios. The first observation to be
made is that the two 16 lighter scenarios are relatively
close in their final values. In fact, there is only
approximately 9 hours difference between these two mean of-

fload times. This difference is likely due to the

45

difference in distance between the two scenarios.

We let X,

and X, be the observed offload times for a replication of

the 16-6 and 16-1 scenarios respectively, and then ran a

paired t-test to compare the two scenarios where:

H,

:4i’l.l —‘i'l.z = Dl = 0, and

1= =2

Tosp N

where D=ZX_,D/n and S, is the standard deviation of the dif-

ferences of paired observations.

t-test follow:

The results of the paired

TABLE 8. PAIRED T-TEST FOR
16-6 AND 16-1 SCENARIOS
Mean 4,330.86 3,791.11
Standard Deviation 429.91 503.49
SE of Mean 14.33 16.78
Number of Pairs 900
Correlation 0.02
2-tail Significance 0.54
Paired Differences
Mean 539.75
Standard Deviation 655.32
SE of Mean 21.84

99% Confidence

t-value

24.71

df

899

2-tail Sigmificance

46

A two-tail significance of zero for the paired dif-
ferences indicates that the probability of observing a dif-
ference this large or larger when the two means are the same
is essentially zero. Additionally, zero does not fall
within the 99% confidence interval for the mean of the
paired differences. The conclusion is that H must be re-
jected and the difference between the two means is statis-
tically significant. Although the difference is
statistically significant, it would be deemed operationally
insignificant in the course of an entire operation. This
difference is relatively small due to the buffering effect
of the queues. The times spent in queue by lighter type and

the idle spot times are listed below.

TABLE 9. MEAN TIME SPENT IN QUEUE BY LIGHTER TYPE

Awaiting Ship Queue Data Awaiting Beach Queue Data

Scenario LCU Ship LSV Ship CWF Ship | LCU Beach | LSV Beach | CWF Beach

16-6 1,066.5 691.9 725.3 144.3 69.5 39.5
16-1 1,198.3 761.3 840.4 418.9 187.7 166.6
5-6 584.9 0 0 0.4 0 0

5-1 1,047.7 [0 3.6 0 l 1.2

rons; a. All times in minutes

47

TABLE 10.

MEAN TIME SHIP AND BEACH SPOTS WERE IDLE

ship Idle Spot Time Beach Idle Spot Time
Scenario LCU Spot CWF 8pot LoLo Spot South Beach | Admin Pier
16-6 1,788.8 1,508.4 1,733.4 1,643.33 2,092.1
16-1 1,615.9 1,210.2 1,646.1 1,198.6 1,518.8
5-6 2,764.7 6,239.7 2,883.4 6,051.6 6,950.6
5-1 1,724.6 3,679.2 1,782.2 4,074.1 5,207.4
FTII: a. All times in minutes

| =

While the interpretation of the total offload time
is straightforward, care must be taken when interpreting
these times. First, note that the mean time spent in queue
is bounded by the total offload time, and should be normal-
ized to the percent of the total offload time spent in
queue. Second, note that the idle times have some non-zero
lower bound that is determined by the number of loads car-
ried by each lighter type.

With so many lighters in the 16 lighter scenarios,
the queues rarely are without the desired lighter type for a
newly available spot, thus, these offload cycles have a
minimum idle time at both the ship and at the beach. Like-
wise, the time spent in queue is relatively high because of
When the distance is de-

the large number of lighters.

creased from six to one mile, the time spent in queue

48

increases and the idle spot times decrease, as would be
expected.

In contrast, the two scenarios with five lighters
each had little or no buffering from the queues, thus, the
idle spot times increase significantly. The mix of lighters
must be explained to understand fully what is happening in
these scenarios. The lighter mix for the five lighter sce-
narios consists of four LCU's, and one CWF. Since there is
no LSV in the scenario, LSV queue times are zero. Because
there is only one CWF in the scenario, the time spent in
queue for the CWF is zero, and it's associated idle spot
time is high. The CWF is essentially running back and forth
directly between ship and beach. For the LCU's, they are
spending more time in the queues because there are more of
them in the mix and they are competing for the same spots.
This undoubtedly forces some into the queue. The queue
times are significantly lower than in the 16 lighter
scenarios, and the idle times are also higher, as would be
expected. Again, as the distance decreases, the queue times

increase and the idle times decrease.

49

What can be concluded about the five lighter
scenarios is that scarcity of resources is driving up the
total offload time. The increase in distance form one to
six miles makes the lighter resources even more scarce,
thus, a higher offload time.

It must be noted that without empirical data to
compare with, it is difficult to say what the queue times
and the idle times should be. There is a significant amount
of variance that results from a mix of lighters with
different load capacities. What has been found in empirical
observations is that using a mix of lighters with similar
capacities smoothes the process. The model results support
this finding. 1In the five lighter scenario we used four
LCU's. If an LSV with a 25 vehicle capacity is substituted
for on LCU in the five lighter mix, the awaiting ship queue
time can be driven up even further. With fewer lighters in
a scenario the effect is more pronounced.

wWhat has been demonstrated here is that the RO/RO
Offload model can be useful in determining throughput time
for a given scenario. 1In real world operations the majority

of variables will be fixed. The decision maker will have a

50

smaller set of variables that can be adjusted to improve the
performance in an offload. For example, the distance of the
ship from the beach is probably a function of anchorage
locations, thus limiting the options. For a given distance
and ship type, the LOTS planner can use the RO/RO Offload
simulation model to help find a better mix of lighters to

work within the fixed parameters.

51

V. CONCLUSIONS

A. CONCLUSIONS

The purpose of this thesis was to provide a valid model
with which reliable estimates of RO/RO throughput could be
obtained. The RO/RO Offload model is valid for this purpose
within the scope of the limiting assumptions. The model can
be used effectively not only to estimate throughput, but to
possibly improve throughput rates by providing LOTS planners
the opportunity to model an offload and adjust the variables
long before the real world equipment is on station.

The four demonstration scenarios serve purely as an il-
lustration of how the model may be used. Planners are cer-
tainly not limited to altering only these variables. 1In
theory, the model could have been run hundreds of times,
evaluating every possible combination of variables. Th2 run
time for the model is so short, however, that it may be used
on demand to provide planning factors tailored to a specific

gcenario.

52

B. RECOMMENDATIONS

The RO/RO Offload model also has the ability to collect
data on the mean time spent in each of the queues by lighter
type as well as the idle time for ship and beach spots. It
is hoped that by collecting and analyzing this data that
some insight could be gained as to how best to alter the
number and mix of lighters for a scenario. Empirical data
was not available to validate these‘features, however, they
were demonstrated in this thesis. We recommend that in fu-
ture operations, data be collected so that the model can be
further validated.

Regarding future work, there are several features that
could be added to either add fidelity to the model or make
it more user friendly. They are:

1. Add graphics to the model.

2. Modify the model to allow the offload of container
ships. The modular structure of object-oriented
programming lends itself to these seemingly broad
modifications. The objects in the RO/RO Offload
model are generic enough to make this a relatively
simple task.

3. Incorporate weather and sea state into the model.

4. Incorporate equipment failures into the model.

53

Joint Publication 4-01.6, The Joint Staff, Joint
Tactics, Techniques, and Procedures for Joint
Logistics Over The Shore, August 1991.

Telephone conversation between Captain Steve Christy,
JLOTS III Test Directorate, and the author, 17 May 1993.

Telephone conversation between LtCol David Miller,
J-4 Mobility, The Joint Staff, and the author, 18 May
1993.

JLOTS I1 Test Directorate, JLOTS II Throughput Test,
Naval Amphibious Base, Little Creek, Norfolk, VA,
1985.

Department of the Army, LOGEX 88 Joint Logistics

Over The Shore (JLOTS) Exercise Executive Summary,
U.S. Army Transportation Center, Fort Bustis, VA,
1989.

CACI Products Company, MODSIM II The Language for
Object-Oriented Programming, Reference Manual, La Jolla,
CA, January 1992.

Bailey, Michael, "Object-Oriented Simulation Pictures
(00S-PIC) Por Designing and Testing, ™ Naval Postgraduate
School, Monterey, CA, 1 February 1993.

JLOTS 11 Test Directorate, JLOTS II Roll On/Roll Off
Ship Operations, Naval Amphibious Base, Little Creek,
Norfolk, VA, 19 March 1984.

JLOTS III Te Directorate, JLOTS III Display

Determination 91 Test Report, Naval Amphibious Base,
Little Creek, Norfolk, VA, 18 November 1992.

54

10.

11.

12.

13.

Center For Naval Analysis, Theoretical Distributions
of Maritime Prepositioned Force Barge Cycle Camponent
Times, CRM 91-3, by William A. D. Wallace, February
1991.

Telephone conversation between Captain Steve Christy,
JLOTS III Test Directorate, and the author, 17 August
1993.

Law, A. M., and Kelton, W. D., Simulation Modeling and
Analysis, 24 ed., McGraw-Hill, 1991.

Norusis, M. J., SPSS For Windows Base System Users
Guide, Release 5.0, SPSS, Chicago, IL, 1992.

55

BIBLIOGRAPHY

Bailey, Michael, "RecIOHandleObj: Object Input Made Rasy,"
Naval Postgraduate School, Monterey, CA, 1 February
1993.

Center For Naval Analysis, CRM 89-339, MPF Exercise Summary,
by John F. Nance and William A. D. Wallace,
February 1990.

Center For Naval Analysis, CRM 91-101, The Maritime
Prepositioned Force Offload Model, Vol. I, by C. A.
Cowie, R. W. Reichard and W. A. D. Wallace,

April 1991.

David Taylor Research Center, EBvaluation of JLOTS Lessons
Learned in Solid Shield 89, by The Mobile Support
Systems Office (Code 1250), September 1989.

JLOTS III Test Directorate, JLOTS III Display
Determination 91 Test Report, Naval Amphibious Base,
Little Creek, Norfolk, VA, 18 November 1992.

JLOTS 1I Test Directorate, JLOTS II Throughput Test,
Naval Amphibious Base, Little Creek, Norfolk, VA,
1985.

Law, A. M., and Kelton, W. D., Simulation Modeling and
Analysis, 2d ed., McGraw-Hill, 1991.

Mendenhall, W., Wackerly, D. D., and Scheaffer, R. L.,
Mathematical Statistics with Applications, 4th ed.,
PWS-KENT, 1990.

Naval Civil Bngineering Laboratory, Report 1717,
Productivity Analysis of Powered Causeway Sections for
ContainerShip Offloading, by R. E. Bergman, December
1984.

56

Shaw, S. B., An Object-Oriented Ship-To-Shore Movement
Analysis Model (CUTTER), Master's Thesis, Naval
Postgraduate School, Monterey, CA, September 1992.

Speight, J. A., A Management Decision Model For Logistics
Over The Shore (LOTS) Operations Using Conditional
Stochastic Network Technigues, Master's Thesis,
Massachusetts Institute of Technology, Cambridge, MA,
January 1988.

Sumner, J. D., An Analysis of the Maritime Prepositioning
Ship (MPS) Instream Offload: A Decision Framework
for the Marine Corps Commander, Master's Thesis, Naval
Postgraduate School, Monterey, CA, December 1991.

Zalewski, A. J., A Ship-To-Shore Simulation, Master's

Thesis, Naval Postgraduate School, Monterey, CA,
September 1991.

57

APPENDIX A LIST OF ACRONYMS

BLCP Beach Lighterage Control Point

CSNP Causeway Section Non-Powered

CSP Causeway Section Powered

CWF Causeway Ferry

DOD Department of Defense

ELCAS Elevated Causeway Pier

GPH Gallons per Hour

JLOTS Joint Logistics Over The Shore
LO/LO Lift on/Lift Off

LOTS Logistics Over The Shore

LCU Type of Lighter, LCU 1466, LCU 1610, LCU 2000
LSV Logistics Support Vessel

NSSR Non-Self-Sustaining RO/RO

OPDS Offshore Petroleum Discharge System
RO/RO Roll On/Roll Off

RRDF Roll On/Roll Off Discharge Facility
SLCP Ship Lighterage Control Point

SSR Self-Sustaining RO/RO

T-ACS Crane Ship

58

APPENDIX B OBJECT-ORIENTED SIMULATION PICTURES

The following pages document the Transition action dia-
grams for the RO/RO Offload model. Transition action
diagrams are a combination of o0ld style flow charts, coupled
with Object-Oriented simulation pictures, or 0O0S-Pics. To-
gether they show the flow of control in the Lighter Cycle
operation of the RO/RO Offload model, including the

interactions between objects, and their methods and fields.

59

Fill All Spots on
RoRo(s)

RoRoObj

ASK SLCP For
Lighter

Appropriate
Lighter in
Queue

Remove Lighter
From Queue

Next Page

No-#

ShipSpot
StartTheShow
SLCPObj
GetLighter
Page 13 g
Step 5
LighterOby
‘st Lighter
approaching will go
directly to ship
GetSpot
L AwaitingSQinueue_]
RemoveThis()

Figure 7:

00S-Pics Page 1.

60

Prev

Page LighterOb;
Log Time Out of
Queue Time In
ShipQueue
LogQueueTime
TELL Lighter to LighterOb;j
ApproachAndMoor
(Ship)
ApproachAnd
Moor
RandTime1
RandomOb;
Get
ApproachAndMoor Q ApproachAnd
Time MoorTime
Normal
{mean,std)
RandTimeZ
Get RandomObj
OperationalDelay
Time
Normal
(mean,std)
Next Page
Figure 8 00S-Pics Page 2.

Prev.

page WAIT L0ghte(0bj
ApproachAndMoor + ApproachAndMoor
OperationalDelay Time
Time OperationaiDelay
Time
ApproachAnd
Moor
LighterOb;
Burn Fuel
FuelCapacity
MinFuel
MinFuelPercent
BurnFuel
RoRoOb;)
NumbLoloVehicles
Decrement Load on NumRRDFVehicles
RoRo NumAnySpotVehicies
Makeload
LighterOb;
Is Load Last
-~
ves Change Load Status LoadStatus
Ship!lD
No I SetLoadStatus
Next Page
Figure 9: O0OO0S-Pics Page 3.

62

Prev LighterOb;
P
a9 TELL Lighter To
Onload
J Onload
RandTime1
RandomOb;
Get OnloadTime
O OnloadTime
Normali
(mean.std)
RandTime?2
RandomOpb;
Get
OperationalDelay O Operational
Time Deley2
Normal or
LogNormal
{mean std)
LighterOb;
WAIT
OnlLoadTime + OnLoadTime
OperationalDelay2 [_OperationalDelay? |
OnlLoad
LighterOb;
Burn Fuel ® FuelCapacity
MinFue!
MinFuelPercent
BurnFue!
Next Page
Figure 10: O0O0OS-Pics Page 4.

63

Prev LighterOb
Page, TELL Lighter To 9 !
CastAndClear
Ship
CastAndClear
RandTime
RandomOQb;
Get
CastAndCiearTime CastAndCiear
Time
Normal or
LogNormal
_(mean std)
LighterOb;
WAIT Q CastAndClearTime
CastAndClearTime
CastAndClear
LighterOb;
FuelCapacity
Burn Fuel MinFuel
MinFuelPercent
BurnFue!
Last Load
Yes
No
Next Page Next Page
Step 2 9
Figure 11: O0OO0OS-Pics Page 5.

64

Vacate Spot

RoRoOb;

ShipSpot

/

SetSpotFree

Log Time Spot
Empty

RoRoOb;

ShipSpot

- =

LogidleShipSpotTimg |

Get Lighter for
Empty Spot

SLCPOb;

=

GetLighter

LighterOby

TELL Lighter To
TransitTo
(Beach)

TransitTo

}

Calculate
TransitTime

LighterOb;

 ——

Next Page

DistanceToBeach
FuliLoadSpeed
. Trans#Time |

Figure 12:

00S-Pics Page 6.

65

WAIT
TranstTime

LighterOb;

TranstTime

TransitTo

Burn Fuel

LighterOb;

FuelCapacity
MinFuel
MinFuelPercent

BurnFuel

Get Spot At Beach <>

BLCPOD,

GetSpot

For Each Beach in
BeachBuilder

Queue Check Spots

BeachOb;

e

BeachSpot

Spot Available

Next Page
BRAVO

CheckSpots

jAwartingBeachQueueOb, l
)
Add to QueueOb;
No™ WatForBeachQ =
Add
Next Page
ALFA

Figure 13:

00S-Pics Page 7.

€6

Prev
Page
ALFA

Log Time In For
Beach Queue

LighterOb;
TELL Lighter To
ApproachAndMoor
(Beach)
ApproachAndMoor
l RandTime1 1
RandomOb
Get
ApproachAndMoor ‘O ApproachAnd
Time MoorTime
Normal
(mean std;
RandTime2
Get
OperationalDelay RandomObj
T
me Operational
Delay
Normal or
UniformReal
WAIT
ApproachAndMoor + LighterOb;
OperationalDelay
Time
ApproachAndMoaor
Next Page

LighterOb;

TimelnBeachQueu¢

LogQueueTime

Figure 14:

00S-Pics Page 8.

67

Prev LighterOb;
Page
Burn Fuel FueiCapaciy
MinFul
- MinFuelPeicent
l BurnFuel
Occupy Beach Spot
Py P BeachOby
BeachSpot
OccupySpot
BeachOby
Log Time In Spot BeachSpotidieTime
LogldleBeachSpotTim
e
LighterOb;
TELL Lighter To
Offl.oad
| OffLoad
RandTime1 l
Get OffLoad Time RandomObj;
Q OffLoadTime
Normal
(mean std)
Next Page
Figure 15: O0OS-Pics Page 9.

68

Prev RandTime1 I

page Get Operati
perational
Delay Time RandomOb
Operational
Delay4
Normal of
UniformReal
WAIT
OffLoadTime +
OperationalDelay4 LighterOb;
OffLoad
LighterOb;
Burn Fuel FuelCapacity
MinFuel
| MunFuelPercent |
BurnFue!

Last Load No No

Yes Yes
Next Page Page 15 Next Page
ALFA BRAVO CHARLIE

Figure 16: O0OS-Pics Page 10.

69

Prev [
: Prev Page LighterOb;j
I\ A CHARLIE TELL Lighter To
: CastAndClear
‘ (Beach)

/ CastAndClear
RandTime1 |

RandomObj

Get CaTstAndCIear O CastAndCiear
ime Time
——Nomalor

LogNormal
(mean,std)

LighterOb)

WAIT
CastAndClearTime

CastAndClear

LighterOb;
FueiCapacity
MinFuel
Burn Fuel —» MinFuelPecent |
BurnFuel
i |
|
BeachQObj
Vacate Spot
O BeachSpot
[SetSpotFree
ext Pag
Step 4 Next Page

FPigure 17: OOS-Pics Page 11.

70

Prev
Page Prev BeachOb;

top 4 Page, Log Time Spot
Empty

BeachSpot

LogldieBeachSpotTin
--e

Jf//// BLCPOb;
Get Lighter For
Empty Spot GetlLighter

Page 7
Step 3
LighterOb;
TELL Lighter To
TransitTo —_—
(Ship) TransitTo
l LighterOb;
Calculate DistanceToShip
TransitTime MaxSpeed
TransitTime
TransitTo
Next Page

Figure 18: O0O0S-Pics Page 12.

71

LighterOb;

WAIT
TransitTime TranstTime

TransitTo

LighterOb;

FuelCapacity
Burn Fuel MinFuel

MinFuelPercent

BurnFue!

SLCPOBb;

Page 20
Step 7 J

For Each Ship in ShipOby
ShipBuilder Queue .
FALSE, Check CheckSpots
Spots

GetSpot

AwaitingShipQueueOt,
Sstioad rs FALSE Add ¢ QueueOb)
on at ieast one (o]
ship. No WartForshipQ >
Spot Available
Yes Add

Page 1
Step 5 Next Page

Figure 19: O0O0S-Pics Page 13.

72

LastLoad 1s
TRUE for all
ships

Yes

|

Calculate and Dump
Stats

StatsOby

Replications
complete

Stop Simulation

DumpStats

No—»

Reset For Next
Replication

FPigure 20:

00S-Pics Page 14.

73

Page 10

BRAVO TELL Lighter To
CastAndClear
{Beach)

< >

-

LighterOb;

CastAndCiear

RandTime1 l

RandomOb;

Get CastAndClear CastAndClear
Time Time
- Normalor——

WAIT
CastAndClearTime

LogNormal
(mean std)

LighterOb;

CastAndClear

LighterOby;

FuelCapacity
MinFuel

Burn Fuel

|
|

L MunF uelPercent |

BurnFuel

BeachOb)

BeachSpot

SetSpotFree

ext Pag
Step 5 Next Page
FPigure 21: O0OS-Pics Page 15.

C

Prev
Page Prev.

tep S Page

Log Time Spot

BeachOb

Empty

/

Get Lighter For
Empty Spot GetlLighter

Page 7
Step 3

TELL Lighter To

BeachSpot

LogldieBeachSpotTing ‘

P9
<

BLCPODb,

LighterOb

TransitTo
(RefuelArea)

I

Calculate DistanceToRefuelArga
ransitTime _

H

Next Page

TransitTo

LighterObj

TransitTo

Figure 22:

00S-Pics Page 16.

75

Prev LighterOb
Page
WAIT
TranstTime TranstTime
TransitTo
LighterOby
FueiCapacity
Bumn Fuel MinFuel
MinF uelPercent
Burnfuel
FuelCPOb
Get Spot At
RefuelArea
GetSpot
For Each -1 RefuelAreaOb;
RefuelArea in
FuelAreaBuilder <:> RefuelSpor
Queue, Check CheckFuelSpots
Spots
i
AwatingFuelQueueOb;]
Add t QueueOb;
\ . o .
Spot Available No - WaltForFuelQ :
Yes Add
Next Page
Figure 23: O0OS-Pics Page 17.

76

FuelCPOb;

Cet Gas Low Lighter -9

GetGaslowlLighter

Occupy Refuel Spot

RefuelAreaOb
RefuelSpot
OccupySpot
Page 20 pySpe
Step 6
TELL Lighter To LighterOb;
ApproachAndMoor
(RefuelArea)
ApproachAndMoor

RandTime1 l

Get RandomOb;
ApproachAndMoor
i Time ApproachAnd

MoorTime

Norma!
(mean. std)

Get I RandTime2 l

OperationalDelay RandomOb;
Delay

LogNormal or
UniformRea!

Next Page

Figure 24: O0O0S-Pics Page 18.

77

Next Page

Prev WAIT LighterOby
Page ApproachAndMoor + pproachAndMoorTi
OperationalDelay DperationalDelay
Time
ApproachAndMoor
LighterOb;
Fuei Capeciy
Burn Fue! MinFuel
MinFuelPercent
l BurnFuel
LighterOb;
TELL Lighter To
Refuel
Refuel!
LighterOb
Calculate CurrentFue! PumpRate
[
RefuelTime <> uelCapacity
LighterOb;
WAIT
RefuelTime
r Refuel
Burn F LighterOb;
|
v e Fuel Capacity
MinF et
| MinFuelPercent |
BurnFue'
TELL Lighter To
CastAndClear
(Refuel Area)
LighterOb;

CastAndClear

Figure 25: O00S-Pics Page 19.

78

f
| Prev } RandTlme1]
Page Get RandomObj
CastAndClearTime
CastAndCilearTime
LogNormal or
UniformReal
WAIT LighterOby
CastAndCiear
i[LighterOby;
| Burn Fuel Fue apacs,
Mirk el
= Minkueirercent
Burnkue:
— [RefuelAreadb; |
Vacate Spot < RefuelSpot
l - SetSpotFree
[UghterOby
—
| TELL Lighter To
i TransitTo
{ h
L (° Ip,} TranstTo
i) ”7__MAJ7 o e LAighte;(_DbrAi]
.[Calculate < > D.nst:r@m;uf,.s".(,s‘r,;‘
! TransitTime —— R rT,!gai::;:;

Next Page

Figure 26: O00S-Pics Page 20.

79

WAIT
TransitTime

LighterOb;

_ =

TransitTime

TransitTo

Burn Fuel

LighterOby

FuelCapacity
MinFuel
MinFuelPercent

BurnFuel

Figure 27:

00S-Pics Page 21.

80

APPENDIX C RO/RO OFFLOAD MODEL SOURCE CODE

MAIN MODULE ROROOff;

Module Name: ROROOff Modified: 26 Jul 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: JLOTS RoRo offload model. Simulates the
instream offload of rolling stock from self-sustaining and
non-self-sustaining Roll On / Roll Off ships equiped for
operations using a RoRo discharge facility (RRDF) and/or
Lift On / Lift Off (LoLo) operations. By means of input
files the user is able to change the scenario by altering
the number and type of Beach landing areas, the number and
type of lighterage to be used, the type of ship, and the
characteristics of the refueling facility.

FROM RepMngr IMPORT RepManager;
FROM ListAll IMPORT ListMaster;
FROM Builder IMPORT ObjectBuilder;
BEGIN

NEW (RepManager) ;

NEW(ListMaster) ;
ASK ListMaster TO ReadAllData;

NEW (ObjectBuilder) ;
ASK ObjectBuilder TO BuildObjects;

ASK RepManager TO ChangeRunParms;
ASK RepManager TO Replicate;

END MODULE.

81

DEFINITION MODULE ListAll;

Module Name: ListAll Modified: 26 Jul 93
Author: M. Bailey Modified By: J. S. Noel
Prof. NPG Lt. USN
DESCRIPTION: Defines the ListMasterObj which NEWs the
appropriate objects and fires the methods to read in the

data files so that ship, lighter, and beach objects can be
built.

ListMasterObj = OBJECT
ASK METHOD ReadAllData;
ASK METHOD ReadShipList;
ASK METHOD ReadLighterList;
ASK METHOD ReadBeachList;
ASK METHOD ReadFuelAreaList;
END OBJECT;
VAR

ListMaster : ListMasterObj;

END MODULE.

82

IMPLEMENTATION MODULE

Listall;

e e

Module Name: ListAll Last Modified: 26 Jul 93

Author: M. Bailey Modified By: J. S. Noel
Prof. NPG Lt. USN

DESCRIPTION: Implements the ListMasterObj which NEWs the
appropriate objects and fires the methods to read in the
data files so that ship, lighter, and beach objects can be

built.

... }

FROM Builder IMPORT ShipBuilder, BeachBuilder,
LighterBuilder,
FuelAreaBuilder;

FROM ShpList IMPORT MasterShipTypeList;

FROM LtList IMPORT MasterLighterTypelist;

FROM BchList IMPORT MasterBeachTypeList;

FROM RFAList IMPORT MasterRefuelTypelist;

FROM ShpName IMPORT MasterShipNameList, ShipNameRecType;

FROM LtName IMPORT MasterLighterNameList,
LighterNameRecType;

FROM BchName IMPORT MasterBeachNameList, BeachNameRecType;

FROM RFAName IMPORT MasterRefuelNamelist,
RefuelNameRecType;

FROM WriteLine IMPORT WriteLine;

OBJECT ListMasterObij;

=)

ASK METHOD ReadAllData;

-)

BEGIN

OUTPUT ("Reading ship data ");
ASK SELF TO ReadShipList;
OUTPUT("Reading Lighter data ");

83

ASK SELF TO ReadLighterlList;

OUTPUT ("Reading Beach data ");

ASK SELF TO ReadBeachList;

OUTPUT ("Reading RefuelArea data ");
ASK SELF TO ReadFuelArealist;

END METHOD;

VAR

Rec : ShipNameRecType;

BEGIN

writeLine(" ");

WriteLine(" Read ShipNameList ");

writeLine(" ");

NEW (MasterShipNameList) ;
ASK MasterShipNameList TO ReadShipNames;

NEW (MasterShipTypelList) ;

Rec := ASK MasterShipNameList First();

WHILE ReC <> NILREC
OUTPUT ("Reading ship info for " + Rec.ShipName);
ASK MasterShipTypeList TO ReadShips (Rec.ShipName) ;

Rec := ASK MasterShipNameList Next (Rec);
END WHILE;

END METHOD;

84

VAR
Rec : LighterNameRecType;

BEGIN

WriteLine(" ");

WriteLine(" Read LighterNameList ");
WriteLine(" ");

NEW (MasterLighterNamelList) ;
ASK MasterLighterNameList TO ReadLighterNames;

NEW (MasterLighterTypelist) ;

Rec := ASK MasterLighterNamelist First();
WHILE RecCc <> NILREC
OUTPUT ("Reading Lighter info for " + Rec.LighterName);
ASK MasterLighterTypeList TO
ReadLighters(Rec.LighterName) ;

Rec := ASK MasterLighterNameList Next (Rec);
END WHILE;

END METHOD;

T T SRR EERTE }
ASK METHOD ReadBeachList;
[)
VAR

Rec : BeachNameRecType;

85

BEGIN

WriteLine(" ");

WriteLine(" Read BeachNameList ");
WriteLine(" ");

NEW (MasterBeachNameList) ;
ASK MasterBeachNamelList TO ReadBeachNames;

NEW (MasterBeachTypeList) ;

Rec := ASK MasterBeachNameList First();

WHILE Rec <> NILREC
OUTPUT ("Reading Beach info for " + Rec.BeachName);
ASK MasterBeachTypelList TO ReadBeaches (Rec.BeachName) ;

Rec := ASK MasterBeachNamelList Next (Rec);
END WHILE;

END METHOD;

VAR

Rec : RefuelNameRecType;

BEGIN

WriteLine(" ");

WriteLine(" Read RefuelNameList 7);

WriteLine(" ");

NEW (MasterRefuelNameList) ;
ASK MasterRefuelNameList TO ReadRefuelNames;

NEW (MasterRefuelTypeList) ;

86

Rec := ASK MasterRefuelNameList First();

WHILE Rec <> NILREC
OUTPUT ("Reading Refuel info for " + Rec.RefuelName);
ASK MasterRefuelTypeList TO

ReadRefuelArea (Rec.RefuelName) ;

Rec := ASK MasterRefuelNameList Next (Rec);
END WHILE;

END METHOD;
END OBJECT;

END MODULE.

DEFINITION MCDULE ReclOHandle;

Module Name: RecIOHandle Last Modified: 18 Jun 93
Author: M. Bailey Modified By; J. S. Noel
Prof. NPGS Lt. USN

DESCRIPTION: Defines the RecIOHandleObj. This PROTO object
serves as a platform for input/output objects in the
simulation. The ProduceRec method is the key method which
inheriting objects must override.

FROM IOMod IMPORT StreamObj;
FROM WriteLine IMPORT WriteLine;
TYPE
SArrayType = ARRAY INTEGER OF STRING;
SHRecType = RECORD

TopString : STRING;

OwnedString : SArrayType;
END RECORD;

87

SHArrayType = ARRAY INTEGER OF SHRecType;

RecIOHandleObj = PROTO
numberIn : INTEGER;
ASK METHOD ReadRecs(IN FileName : STRING);
ASK METHOD ProduceRec(IN HeadString : STRING) : #ANYREC;

{Must inherit and override to use ProduceRec. Should
tailor ProduceRec to meet the record type spec. of
your application.}

ASK METHOD ProduceRecByIndex(IN Index : INTEGER):
#ANYREC;

{Produces the record by its index in SHArray. Used

usually when the entire set of records is going to be
produced at once. No override needed, as it relies on

ProduceRec. }
{FindSHRec newly public}

ASK METHOD FindSHRec (IN TopString : STRING;
OUT SHRecC : SHRecType);

SHArray : SHArrayType;

ASK METHOD ReadSH(IN File : StreamObj;
OUT SHRec : SHRecCType;
OUT error : BOOLEAN) ;

ASK METHOD DumpRec (IN SHRec : SHRecType);

{ Dumps the rec to sim.out }
ASK METHOD ObjTerminate;

END PROTO;

END MODULE.

88

IMPLEMENTATION MODULE RecIOHandle;

T e
Module Name: RecIOHandle Last Modified: 18 Jun 93
Author: M. Bailey Modified By; J. S. Noel

Prof. NPGS Lt. USN

DESCRIPTION: Implements the RecIOHandleObj. This PROTO
object serves as a platform for input/output objects in the
simulation. The PvoduceRec method is the key method which
inheriting objects must override.
FROM IOMod IMPORT StreamObj, FileUseType(Input);
FROM IOMod IMPORT ReadKey:
FROM WriteLine IMPORT WriteLine;
CONST
HeadStringSpew = FALSE;
Spew = FALSE;
LittleSpew = FALSE;
TYPE
StringRecType = RECORD

String : STRING;

Next : StringRecType;
END RECORD;
VAR
NameOfFile : STRING;

PROTO RecIOHandleObj;

ASK METHOD DumpRec (IN SHRec : SHRecType);
{ Dumps the rec to sim.out }

89

VAR

i : INTEGER;
max : INTEGER;

BEGIN

WriteLine (SHRec.TopString + " -> (has " +
INTTOSTR (HIGH (SHRec.OwnedString))
+ " fields)");

max := HIGH(SHRec.OwnedString);

FOR i := 1 TO max

WriteLine(" ->" + SHRec.OwnedsString[i] + "<-");
END FOR;
END METHOD;
R)
ASK METHOD ProduceRec(IN HeadString : STRING): ANYREC;
R e PRETETEEPE)

{This method does nothing, as it needs to be overridden. }
BEGIN
RETURN (NILREC) ;

END METHOD;

-)
ASK METHOD ProduceRecByIndex(IN Index : INTEGER): ANYREC;

- m e)
VAR

Rec : ANYREC;

90

BEGIN

IF Index <= HIGH(SHArray)
Rec := ProduceRec (SHArray[Index] .TopString);

ELSE
Rec := NILREC;

END IF;
RETURN(Rec) ;

END METHOD;

VAR

File : StreamObj;
numberQfSH : INTEGER;
i : INTEGER;

error : BOOLEAN;
string : STRING;
BEGIN

NameOfFile := FileName;
{NameOfFile is a local var used in error message. }

NEW(File) ;
ASK File TO Open(FileName, Input);

ASK File TO ReadInt (numberOfSH) ;
ASK File TO ReadLine(string);

numberIn := numberOfSH;

91

IF LittleSpew
WriteLine("Opened file " + FileName + " which has " +
INTTOSTR (numberOfSH) +
" SHRecords");

END IF;

NEW (SHArray, 1l..numberOfSH);
FOR i := 1 TO numberOfSH
IF HeadStringSpew

WriteLine("---------- Rec "™ + INTTOSTR(i));
OUTPUT("Rec " + INTTOSTR(i) + " ");
END 1IF;

ReadSH(File, SHArray(i], error);
IF error
OUTPUT("problem reading file ", FileName, " BAD FORMAT
DETECTED at " +
INTTOSTR(1i));
WriteLine("problem reading file " + FileName + " BAD
FORMAT DETECTED at " +
INTTOSTR(1i));
END IF;

END FOR;

END METHOD;

ASK METHOD ReadSH(IN File : StreamObj;
OUT SHRec : SHRecType;
OUT error : BOOLEAN) ;

VAR

string : STRING;
junk : STRING;

92

numberOfStrings : INTEGER;

SstringRec, OldStringRec : StringRecType;
first : StringRecType;

arrow : STRING;

stringRec : StringRecType;

i : INTEGER;

Z : CHAR;

BEGIN

NEW (SHRec) ;
REPEAT
ASK File TO ReadString(string);
IF ((string = "..") OR (SUBSTR(1,1,string) = "#"))
ASK File TO ReadLine(junk);
END IF;

UNTIL ((string <> "..") AND (SUBSTR(1,1,string) <> "#"));
SHRec.TopString := string;
IF HeadStringSpew
OUTPUT (SHRec.TopString) ;
WriteLine(" " + SHRec.TopString);
END IF,;
NEW(StringRec) ;
numberOfStrings := 1;
first := StringRec;
ASK File TO ReadString(arrow);

IF arrow <> "->"
OUTPUT("file not formatted correctly");

error := TRUE;
RETURN;

ELSE
error := FALSE;

93

END IF;

WHILE string <> "\\"
ASK File TO ReadString(string);
IF ((string = "..") OR (SUBSTR(1,1,string) = "#"))
ASK File TO ReadLine(string);

ELSE
OldstringRec := StringRec;
StringRec.String := string;
NEW (StringRec) ;
OldstringRec.Next := StringRec;

numberOfStrings := numberOfStrings + 1;
END IF,;
END WHILE;
ASK File TO ReadLine(string);
IF (numberofstrings > 0) AND NOT error
NEW (SHRec.OwnedString, 1..numberOfStrings - 2);

stringRec := first;

FOR i1 := 1 TO numberOfStrings - 2
SHRec.OwnedString(i] := stringRec.String;

IF Spew
OUTPUT(i, "™ ", stringRec.String);
WriteLine (SHRec.OwnedString[i] + " ");
END IF;
stringRec := stringRec.Next;

END FOR;

END 1IF;

94

END METHOD;

ASK METHOD FindSHRec(IN TopString : STRING;
OUT SHRec : SHRecType) ;

VAR

ThisRec : SHRecType;
i : INTEGER;

BEGIN
i := 0;

REPEAT
INC(1i);
ThisRec := SHArrayl([i];

UNTIL ((i >= HIGH(SHArray)) OR (ThisRec.TopString =
TopString));

IF (ThisRec. TopString = TopString)
SHRec := ThisRec;

ELSE
SHRec := NILREC;
WriteLine("FindSHRec of RecIOHandle came up empty
searching for TopString " +
TopString) ;
WriteLine("while looking in file " + NameOfFile);

END 1IF;
IF Spew

WriteLine(" !!! find sh rec called with topstring " +
TopString +

95

* and returns rec with topstring " +
ThisRec.TopString) ;

END IF;

END METHOD;

i : INTEGER;
REC : SHRecType;

BEGIN

FOR i := 1 TO HIGH(SHArray)
REC := SHArrayl(il;
DISPOSE (REC.OwnedString) ;
DISPOSE(REC) ;

END FOR;

END METHOD;

END PROTO;

END MODULE.

DEFINITION MODULE ShpName;

Module Name: ShpName Last Modified: 28 Jul 93
Author: J. S. Noel

96

Lt. USN

DESCRIPTION: Implements the ShipNameListObj and the
ShipNameIORecHandleObj which together provide the means for
inputing the Ship Names into the simulation for a given
scenario.

FROM RecIOHandle IMPORT RecIOHandleObj;

FROM ListMod IMPORT Queuelist;

TYPE

ShipNameRecType = RECORD
ShipName : STRING;

END RECORD;

ShipNameListObj = OBJECT (QueueList [ANYREC :ShipNameRecTypel)
ASK METHOD ReadShipNames;

END OBJECT,

ShipNameIORecHandleObj=0OBJECT (RecIOHandleObj [ANYREC:
ShipNameRecTypel)

END OBJECT;

VAR

ShipNameIOHandler : ShipNameIORecHandleObj;
MasterShipNameList : ShipNameListObj;

END MODULE.

97

IMPLEMENTATION MODULE ShpName;

Module Name: ShpName Last Modified: 28 Jul 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: Implements the ShipNameListObj and the
ShipNameIORecHandleObj which together provide the means for
inputing the Beach names into the simulation for a given
scenario.

... }
FROM ReclIOHandle IMPORT SHArrayType;

OBJECT ShipNameListObj;

- mmom }
ASK METHOD ReadShipNames;
e }
VAR

Rec : ShipNameRecType;

index : INTEGER;

high : INTEGER;

SHArray : SHArrayType;

BEGIN
IF ShipNameIOHandler = NILOBJ

NEW (ShipNameIOHandler) ;

ASK ShipNameIOHandler TO ReadRecs("ShpName.dat");
END 1IF;

SHArray := ASK ShipNameIOHandler SHArray;
high := HIGH(SHArray);

FOR index := 1 TO high

98

NEW (Rec) ;
Rec.ShipName := SHArray[index] .TopString;
Add(Rec) ;

END FOR;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE ShpList;

Module Name: Shplist Last Modified: 18 Jun 923
Author: J. S. Noel
Lt. USN

DESCRIPTION: Defines the ShipTypeListObj and the
ShipTypeIORecHandleObj which together provide the means for
inputing the RoRo's into the simulation for a given
scenario.

___ }
FROM ReclIOHandle IMPORT RecIOHandleObj;

FROM ListMod IMPORT Queuelist;

FROM Global IMPORT SpotRecType;

FROM Ship IMPORT ShipTypeType;

TYPE

SpotArrayType = ARRAY INTEGER OF SpotRecType;

ShipTypeRecType = RECORD

ShipTypeName : STRING;
TypeShip : ShipTypeType;
DistanceFromBLCP : REAL;

929

NumOfSpots : INTEGER;

SpotArray : SpotArrayType;
NumOfLoLoVehicles : INTEGER;
NumOfRRDFVehicles : INTEGER;
NumOfAnySpotVehicles : INTEGER;

END RECORD;

ShipTypeListObj = OBJECT(QueueList [ANYREC :

ShipTypeRecType]l)
ASK METHOD ReadShips(IN ShipName : STRING) ;

END OBJECT;

ShipTypelORecHandleObj = OBJECT(RecIOHandleObj [ANYREC :

ShipTypeRecType])
OVERRIDE
ASK METHOD ProduceRec(IN HeadString : STRING):
ShipTypeRecType;
END OBJECT;
VAR

ShipTypelOHandler : ShipTypeIORecHandleObj;
MasterShipTypelList : ShipTypeListObj;

END MODULE.

IMPLEMENTATION MODULE ShpList;

{ ...
Module Name: ShpList Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the ShipTypeListObj and the
ShipTypelIORecHandleObj which together provide the means for

100

inputing the RoRo's into the simulation for a given
scenario.

FROM ReclOHandle IMPORT SHRecType;

FROM WriteLine IMPORT Writeline;

FROM Global IMPORT SpotRecType;

FROM Convert IMPORT SpotTypeToStr, StrToSpotType,
ShipTypeToStr, StrToShipType,
BooleanToStr;

OBJECT ShipTypelORecHandleObj;

L T
ASK METHOD ProduceRec(IN HeadString : STRING):

ShipTypeRecType;
T T TR T
VAR

SHRec : SHRecType;

Rec : ShipTypeRecType;
index, i : INTEGER;
Char : CHAR;

Spot : SpotRecType;

BEGIN

WriteLine(" producing record Ship type " + HeadString);

QUTPUT(" producing record Ship type " + HeadString);

FindSHRec (HeadString, SHRec);

WriteLine(" ");

IF SHRec = NILREC
OUTPUT("No record Found of " + HeadString);
WriteLine("No record Found of " + HeadString);
HALT,;

END IF,;

OUTPUT(" got SHRec");

NEW (Rec) ;

Rec.ShipTypeName := SHRec.TopString;

OUTPUT("ShipTypeName is " + Rec.ShipTypeName) ;
WriteLine("ShipTypeName is " + Rec.ShipTypeName) ;

101

index := 1;

Rec.TypeShip := StrToShipType (SHRec.OwnedString([index]);
WriteLine("TypeShip is " + ShipTypeToStr (Rec.TypeShip));
INC(index) ;

Rec.DistanceFromBLCP := STRTOREAL(SHRec.OwnedString{index]);
WriteLine("DistanceFromBLCP is " +

REALTOSTR (Rec.DistanceFromBLCP)) ;

INC(index) ;

Rec.NumOfSpots := STRTOINT (SHRec.OwnedString[index});
WriteLine ("NumOfSpots is " + INTTOSTR(Rec.NumOfSpots));
INC(index) ;

NEW (Rec.SpotArray, 1l..Rec.NumOfSpots);
OUTPUT("index = " + INTTOSTR(index));

IF (Rec.NumOfSpots > 0)
i:= 1;
WHILE i <= Rec.NumOfSpots
NEW(Spot) ;
Spot .SpotClassification :=
StrToSpotType (SHRec.OwnedString [index]) ;

WriteLine("Spot "+ INTTOSTR(i) + " is Type " +
SpotTypeToStr (Spot .SpotClassification));

OUTPUT("Spot "+ INTTOSTR(i) + " is Type " +
SpotTypeToStr (Spot .SpotClassification));

Char := SCHAR(SHRec.OwnedStringl[index+1], 1);

CASE Char
WHEN 'T','t' : Spot.SpotFree := TRUE;
WHEN 'F','f' : Spot.SpotFree := FALSE;
END CASE;

WriteLine("Spot "+ INTTOSTR(i) + " is Free (T/F) " =+
BooleanToStr (Spot . SpotFree)) ;

102

OUTPUT("Spot "+ INTTOSTR(i) + " is Free (T/F) " +
Char) ;

Rec.SpotArray(i] := Spot;
i:=1i4+ 1;
index := index + 2;
END WHILE;
END IF;

index := index;
Rec.NumOfLoLoVehicles := STRTOINT(SHRec.OwnedStringlindex]);
WriteLine ("NumOfLoLoVehicles is " +

INTTOSTR (Rec . NumOfLoLoVehicles)) ;
INC(index) ;
Rec.NumOfRRDFVehicles := STRTOINT (SHRec.OwnedString[index]);
WriteLine ("NumOfRRDFVehicles is " +

INTTOSTR (Rec.NumOfRRDFVehicles)) ;
INC(index) ;
Rec.NumOfAnySpotVehicles :=

STRTOINT (SHRec.OwnedString [index]) ;

WriteLine ("NumOfAnySpotVehicles is " +

INTTOSTR (Rec.NumOfAnySpotvehicles)) ;
INC(index) ;
OUTPUT ("finished reading Ship type information");
RETURN (Rec) ;
END METHOD;

END OBJECT;

OBJECT ShipTypeListObj;

103

Rec : ShipTypeRecType;

BEGIN
IF ShipTypelOHandler = NILOBJ

NEW (ShipTypeIOHandler) ;

ASK ShipTypelOHandler TO ReadRecs("ShipType.dat");
END IF;

OUTPUT("ship handler instanciated and full of raw records");
OUTPUT ("about to produce type record for " +ShipType);

Rec := ASK ShipTypelOHandler TO ProduceRec (ShipType);
OUTPUT(" got the record complete ");

IF (Rec <> NILREC)
Add (Rec) ;
ELSE
OUTPUT ("™ never found record!");
END IF;
END METHOD;
END OBJECT;

END MODJLE.

104

DEFINITION MODULE LtName;

Module Name: LtName Last Modified: 28 Jul 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: Defines the LighterNameListObj and the
LighterNamelIORecHandleObj which together provide the means
for inputing the Lighter Names into the simulation for a
given scenario.

... }
FROM ReclOHandle IMPORT RecIOHandleObj;
FROM ListMod IMPORT QueuelList;
TYPE
LighterNameRecType = RECORD
LighterName : STRING;
END RECORD;
LighterNameListObj = OBJECT (QueueList [ANYREC
LighterNameRecType])
ASK METHOD ReadLighterNames;

END OBJECT;

LighterNameIORecHandleObj=0BJECT (RecIOHandleObj [ANYREC:
LighterNameRecType])

END OBJECT;

VAR

LighterNameIOHandler : LighterNamelORecHandlefbj;
MasterLighterNameList : LighterNameListObj;

END MODULE.

105

IMPLEMENTATION MODULE LtName;

Module Name: LtName Last Modified: 28 Jul 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: Implements the LighterNameListObj and the
LighterNameIORecHandleObj which together provide the means
for inputing the Lighter Names into the simulation for a
given scenario.

... }
FROM RecIOHandle IMPORT SHArrayType;

FROM WriteLine IMPORT WriteLine;

OBJECT LighterNameListObj;

R e EEREeE L L L LT TR PEPEEPEPEREE)
ASK METHOD ReadLighterNames;
R e T PP E PP PP PR)
VAR

Rec : LighterNameRecType;

index : INTEGER;

high : INTEGER;

SHArray : SHArrayType;

BEGIN

IF LighterNameIOHandler = NILOBJ

NEW (LighterNameIOHandler) ;

ASK LighterNameIOHandler TO ReadRecs("LtName.dat");
END IF;

SHArray := ASK LighterNameIOHandler SHArray;
high := HIGH(SHArray);

106

FOR index := 1 TO high
WriteLine("Reading Lighter Name in LtName.mod ");
NEW (Rec) ;
Rec.LighterName := SHArray[index] .TopString;
Add(Rec) ;

END FOR;

WriteLine("----exit ReadLighterNames----- ")

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE LtList;

{ ...
Module Name: LtList Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the LighterTypeListObj and the
LighterTypeIORecHandleObj which together provide the means
for inputing the Lighter's into the simulation for a given
scenario.

FROM RecIOHandle IMPORT RecIOHandleObj;

FROM ListMod IMPORT Queuelist;

FROM Global IMPORT SpotRecType, SpotType;
FROM Lighter IMPORT LighterNameType;

TYPE

LighterTypeRecType = RECORD

107

ID : STRING;

LighterTypeName : LighterNameType;
SpotRequired : SpotType;
SpeedMax : REAL;
SpeedFull : REAL;
MaxLoad : INTEGER;
FuelCap : REAL;
BurnRate : REAL;
MinFuel : REAL;
END RECORD;

LighterTypeListObj = OBJECT(QueueList [ANYREC :
LighterTypeRecType])
ASK METHOD ReadLighters(IN LighterName : STRING);
END OBJECT;

LighterTypelORecHandleObj = OBJECT(RecIOHandleObj [ANYREC :

LighterTypeRecTypel)
OVERRIDE
ASK METHOD ProduceRec(IN HeadString : STRING):
LighterTypeRecType;
END OBJECT;
VAR

LighterTypelOHandler : LighterTypeIORecHandleObj;
MasterLighterTypelist : LighterTypeListObj;

END MODULE.

108

IMPLEMENTATION MODULE LtList;

{ ...
Module Name: LtList Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the LighterTypeListObj and the
LighterTypelORecHandleObj which together provide the means
for inputing the Lighter's into the simulation for a given
scenario.

... }

FROM RecIOHandle IMPORT SHRecType;

FROM WriteLine IMPORT WritelLine;

FROM Global IMPORT SpotRecType;

FROM Convert IMPORT SpotTypeToStr, StrToSpotType,
LighterNameTypeToStr,
StrToLighterNameType;

OBJECT LighterTypelIORecHandleObj;

e S RSRRCEEEREEEEE)

ASK METHOD ProduceRec(IN HeadsString : STRING) :

LighterTypeRecType;
R Rt }
VAR

SHRec : SHRecType;

Rec : LighterTypeRecType;
index, i : INTEGER;

Char : CHAR;

BEGIN
WriteLine(" producing record Lighter type " + HeadString);
OUTPUT(" producing record Lighter type " + HeadString);
FindSHRec (HeadString, SHRec);
WriteLine(" ");
IF SHRec = NILREC

OUTPUT("No record Found of " + HeadString);

109

WriteLine("No record Found of " + HeadString);
HALT;

END IF;

OUTPUT(" got SHRec");

NEW (Rec) ;

Rec.ID := SHRec.TopString;
WriteLine("LighterIlD is " + Rec.ID);
index := 1;

Rec.LighterTypeName :=

StrToLighterNameType (SHRec.OwnedString [index]) ;
OUTPUT("LighterTypeName is " +
LighterNameTypeToStr (Rec.LighterTypeName)) ;
WriteLine("LighterTypeName is * +
LighterNameTypeToStr (Rec.LighterTypeName)) ;
INC(index) ;

Rec.SpotRequired := StrToSpotType (SHRec.OwnedString[index]) ;
WriteLine("SpotRequired is " +

SpotTypeToStr (Rec.SpotRequired)) ;

INC (index) ;

Rec.SpeedMax := STRTOREAL(SHRec.OwnedString[index]);
WriteLine("MaxSpeed is " + REALTOSTR(Rec.SpeedMax)) ;
INC (index) ;

Rec.SpeedFull := STRTOREAL (SHRec.OwnedString[index]) ;
WriteLine("Full Load Speed is " + REALTOSTR(Rec.SpeedFull));
INC(index) ;

Rec.MaxLoad := STRTOINT(SHRec.OwnedString[index]) ;
WriteLine("Max Load is " + INTTOSTR(Rec.MaxLoad));
INC(index) ;

Rec.FuelCap := STRTOREAL (SHRec.OwnedStringlindex]) ;
WriteLine("Fuel capacity is " + REALTOSTR(Rec.FuelCap));
INC(index) ;

Rec.BurnRate := STRTORmaL (SHRec.OwnedString[index]);

110

WriteLine("Fuel burn rate is " + REALTOSTR(Rec.BurnRate)) ;
INC(index) ;

Rec.MinFuel := STRTOREAL(SHRec.OwnedString[index]);

WriteLine("minimum fuel percentage is " +
REALTOSTR (Rec.MinFuel)) ;

INC(index) ;

OUTPUT("finished reading Lighter type information");
RETURN (Rec) ;
END METHOD;

END OBJECT;

OBJECT LighterTypeListObj;

VAR
Rec : LighterTypeRecType;

BEGIN
IF LighterTypeIOHandler = NILOBJ
NEW(LighterTypelIOHandler) ;
ASK LighterTypelIOHandler TO ReadRecs("LtType.dat");
END IF;

OUTPUT ("Lighter handler instanciated and full of raw
records") ;
OUTPUT("about to produce type record for " + LighterType);
Rec := ASK LighterTypeIOHandler TO ProduceRec(LighterType) ;
OUTPUT(" got the record complete ");
IF ReCc <> NILREC

Add (Rec) ;
ELSE

111

OUTPUT(" never found record!");
END 1F;

END METHOD;
END OBJECT;

END MODULE.

DEFINITION MODULE BchName;

Module Name: BchName Last Modified: 28 Jul 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: Defines the BeachNameListObj and the
BeachNameIORecHandleObj which together provide the means for
inputing the Beach Names into the simulation for a given
scenario.

FROM RecIOHandle IMPORT RecIOHandleObj;

FROM ListMod IMPORT QueueList;

TYPE

BeachNameRecType = RECORD
BeachName : STRING;

END RECORD;

BeachNameListObj =OBJECT (QueueList [ANYREC:BeachNameRecType])
ASK METHOD ReadBeachNames;
END OBJECT;

112

BeachNamelORecHandleObj = OBJECT (RecIOHandleObj [ANYREC
BeachNameRecType])
END OBJECT,;

VAR

BeachNameIOHandler : BeachNameIORecHandleObj;
MasterBeachNameList : BeachNameListObj;

END MODULE.

IMPLEMENTATION MODULE BchName;

Module Name: BchName Last Modified: 28 Jul 93
Author: J. S. Noel

DESCRIPTION: Implements the BeachNameListObj and the
BeachNameIORecHandleObj which together provide the means for
inputing the Beach names into the simulation for a given
scenario.

___ }
FROM RecIOHandle IMPORT SHArrayType,

OBJECT BeachNameListObj;
T PP PR)
ASK METHOD ReadBeachNames;
e e TR R RS }
VAR

Rec : BeachNameRecType;

index : INTEGER;

high : INTEGER;

SHArray : SHArrayType;

113

BEGIN
IF BeachNameIOHandler = NILOBJ

NEW (BeachNameIOHandler) ;

ASK BeachNamelOHandler TO ReadRecs("BchName.dat");
END IF;

SHArray := ASK BeachNameIOHandler SHArray;
high := HIGH(SHArray) ;

FOR index := 1 TO high
NEW (Rec) ;
Rec.BeachName := SHArray(index].TopString;
Add(Rec) ;

END FOR;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE BchList;

T E LT
Module Name: BchList Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the BeachTypeListObj and the
BeachTypeIORecHandleObj which together provide the means for
inputing the Beaches into the simulation for a given
scenario.

... }
FROM RecIOHandle IMPORT RecIOHandleObj;

FROM ListMod IMPORT Queuelist;

FROM Global IMPORT SpotRecType, SpotType;

114

FROM Beach IMPORT BeachType;
FROM ShpList IMPORT SpotArrayType;

TYPE

BeachTypeRecType = RECORD

ID : STRING;
BeachTypeName : BeachType;
NumOfSpots : INTEGER;
SpotArray : SpotArrayType;
DistanceFromSLCP : REAL;
DistBeachToArea : REAL;

END RECORD;

BeachTypeListObj = OBJECT (QueueList [ANYREC :
BeachTypeRecType])
ASK METHOD ReadBeaches(IN BeachName : STRING);
END OBJECT;

BeachTypeIORecHandleObj = OBJECT(RecIOHandleObj [ANYREC

BeachTypeRecType])
OVERRIDE
ASK METHOD ProduceRec(IN HeadString : STRING):
BeachTypeRecType;
END OBJECT;
VAR

BeachTypelOHandler : BeachTypelIORecHandleObj;
MasterBeachTypeList : BeachTypeListObj;

END MODULE.

115

IMPLEMENTATION MODULE BchList;

e TR TR R
Module Name: Bchlist Last Modified: 28 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the BeachTypeListObj and the
BeachTypeIORecHandleObj which together provide the means for
inputing the Beaches into the simulation for a given
scenario.

... }

FROM RecIOHandle IMPORT SHRecType;

FROM WriteLine IMPORT WriteLine;

FROM Global IMPORT SpotRecType;

FROM Convert IMPORT SpotTypeToStr, StrToSpotType,
BeachTypeToStr, StrToBeachType,
BooleanToStr;

OBRJECT BeachTypeIORecHandleObj;

R R SAGRAAEEEEEEEEES }

ASK METHOD ProduceRec (IN HeadString : STRING):

BeachTypeRecType;
e RS REEEEPE)
VAR

SHRec : SHRecType;

Rec : BeachTypeRecType;
index, i : INTEGER;
Char : CHAR;

Spot : SpotRecType;

BEGIN

WriteLine(" producing record Beach type " + HeadString);
OUTPUT(" producing record Beach type " + HeadString);
FindSHRec (HeadString, SHRec);

WriteLine(™ ");

116

IF SHRec = NILREC
OUTPUT("No record Found of " + HeadString);
WriteLine("No record Found of " + HeadString);
HALT;

END IF;

OUTPUT (" got SHRec");

NEW (Rec) ;

Rec.ID := SHRec.TopString;
WriteLine("BeachID is " + Rec.ID);
index := 1;

Rec.BeachTypeName :=

StrToBeachType (SHRec.OwnedString [index]) ;
OUTPUT ("BeachTypeName is " +
BeachTypeToStr (Rec.BeachTypeName)) ;
WriteLine ("BeachTypeName is " +
BeachTypeToStr (Rec.BeachTypeName)) ;
INC(index) ;

Rec.NumOfSpots := STRTOINT(SHRec.OwnedStringlindex]);
WriteLine("Number Of Spots is " + INTTOSTR(Rec.NumOfSpots));
INC(index) ;

NEW (Rec.SpotArray, 1..Rec.NumOfSpots);
OUTPUT("index = " + INTTOSTR(index));

IF (Rec.NumOfSpots > 0)
i:=1;
WHILE i <= Rec.NumOfSpots
NEW (Spot) ;
Spot.SpotClassification :=
StrToSpotTywe {SHRec.OwnedString[index]) ;

WriteLine("Spot "+ INTTOSTR(i) + " is Type " +
SpotTypeToStr (Spot . SpotClassification)) ;

OUTPUT("Spot "+ INTTOSTR(i) + " is Type " +
SpotTypeToStr (Spot .SpotClassification));

117

Char := SCHAR(SHRec.OwnedString[index+1], 1);
CASE Char
WHEN 'T','t' : Spot.SpotFree := TRUE;
WHEN 'F','f' : Spot.SpotFree := FALSE;
END CASE;
WriteLine("Spot "+ INTTOSTR(i) + " is Free (T/F) " +
BooleanToStr (Spot . SpotFree)) ;
OUTPUT("Spot "+ INTTOSTR(i) + " is Free (T/F) " +
Char) ;

Rec.SpotArray[i] := Spot;

i:=14+ 1;

index := index + 2;

END WHILE;

END IF;
index := index;
Rec.DistanceFromSLCP := STRTOREAL(SHRec.OwnedString(index]) ;
WriteLine("DistanceFromSLCP is " +
REALTOSTR (Rec.DistanceFromSLCP)) ;
INC(index) ;
Rec.DistBeachToArea := STRTOREAL (SHRec.OwnedString{index]);
WriteLine("DistBeachToArea is " +
REALTOSTR (Rec.DistBeachToArea)) ;
INC(index) ;
ouTPUT ("finished reading Beach type information");
RETURN (Rec) ;
END METHOD;

END OBJECT;

OBJECT BeachTypeListObj;

118

VAR
Rec : BeachTypeRecType;

BEGIN
IF BeachTypelOHandler = NILOBJ

NEW (BeachTypeIOHandler) ;

ASK BeachTypelOHandler TO ReadRecs("BchType.dat");
END IF;

OUTPUT ("Beach handler instanciated and full of raw
records") ;
OU_PUT("about to produce type record for " + BeachType);
Rec := ASK BeachTypelOHandler TO ProduceRec (BeachType) ;
OUTPUT (" got the record complete ");
IF Rec <> NILREC

Add (Rrec) ;
ELSE

OUTPUT (" never found record!");
END IF;

END METHOD;
END OBJECT;

END MODULE.

DEFINITION MODULE RFAName;

Module Name: RFAName Last Modified: 28 Jul 93
Author: J. S. Noel
Lt. USN

119

DESCRIPTION: Defines the RefuelNameListObj and the
RefuelNameIORecHandleObj which together provide the means
for inputing the Refuel area Names into the simulation for a
given scenario.

FROM RecIOHandle IMPORT RecIOHandleObj;

FROM ListMod IMPORT QueueList;

TYPE

RefuelNameRecType = RECORD
RefuelName : STRING;

END RECORD;

RefuelNameListObj = OBJECT(QueueList [ANYREC :
RefuelNameRecType])
ASK METHOD ReadRefuelNames;
END OBJECT;

RefuelNameIORecHandleObj = OBJECT(RecIOHandleCbj [ANYREC
RefuelNameRecTypel)

END OBJECT;

VAR

RefuelNameIOHandler : RefuelNameIORecHandleObj;
MasterRefuelNameList : RefuelNameListObj;

END MODULE.

120

IMPLEMENTATION MODULE RFAName;

Module Name: RFAName Last Modified: 28 Jul 93

DESCRIPTION: Implements the RefuelNameListObj and the
RefuelNameIORecHandleObj which together provide the means
for inputing the Refuel area Names into the simulation for a
given scenario.

... }
FROM RecIOHandle IMPORT SHArrayType;

OBJECT RefuelNameListObj;

- oo)
ASK METHOD ReadRefuelNames;
T T EEE P EEERTTREE }
VAR

Rec : RefuelNameRecType;

index : INTEGER;

high : INTEGER;

SHArray : SHArrayType;

BEGIN

IF RefuelNamelOHandler = NILOBJ

NEW (RefuelNameIOHandler) ;

ASK RefuelNameIOHandler TO ReadRecs("RFAName.dat");
END IF;

SHArray := ASK RefuelNamelIOHandler SHArray;
high := HIGH(SHArray);

FOR index := 1 TO high
NEW (Rec) ;

121

Rec.RefuelName := SHArrayl[index] .TopString;
Add(Rec) ;

END FOR;
END METHOD;
END OBJECT;

END MODULE.

DEFINITION MODULE RFAList;

T T T T T R
Module Name: RFAList Last Modified: 28 Jul 93
Author: J. S§. Noel

Lt. USN

DESCRIPTION: Defines the RefuelTypeListObj and the
RefuelTypelORecHandleObj which together provide the means
for inputing the Refuel area into the simulation for a given
scenario.

... }
FROM RecIOHandle IMPORT RecIOHandleObj;
FROM ListMod IMPORT Queuelist;
FROM Global IMPORT RefuelSpotRecType;
FROM Refuel IMPORT RefuelSpotArrayType;
TYPE
RefuelTypeRecType = RECORD
AreaTypeName : STRING;
NumOfSpots : INTEGER;
DistAreaToShip : REAL;
SpotArray : RefuelSpotArrayType;
FuelPumpRate : REAL;
122

END RECORD;

RefuelTypeListObj = OBJECT (QueueList [ANYREC :
RefuelTypeRecType])
ASK METHOD ReadRefuelArea(IN RefuelAreaName : STRING) ;
END OBJECT;

RefuelTypelORecHandleObj = OBJECT (RecIOHandleObj [ANYREC :
RefuelTypeRecTypel)

OVERRIDE
ASK METHOD ProduceRec(IN HeadString : STRING) :
RefuelTypeRecType;
END OBJECT;
VAR

RefuelTypelOHandler : RefuelTypeIORecHandleObj;
MasterRefuelTypeList+ : RefuelTypeListObj;

END MODULE.

IMPLEMENTATION MODULE RFAList;

Module Name: RFAList Last Modified: 28 Jul 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: Implements the RefuelTypeListObj and the
RefuelTypelORecHandleObi which together provide the means
for inputing the Refuel area into the simulation for a given
scenario.

FROM RecIOHandle IMPORT SHRecType;

FROM WriteLine IMPORT WriteLine;

FROM Global IMPORT RefuelSpotRecType;
FROM Convert IMPORT BooleanToStr;

OBJECT RefuelTypeIORecHandleObj;

123

ASK METHOD ProduceRec(IN HeadString : STRING) :
RefuelTypeRecType;

VAR

SHRec : SHRecType;

Rec : RefuelTypeRecType;
index, i : INTEGER;

Char : CHAR;

Spot : RefuelSpotRecType;

BEGIN

WriteLine(" producing record Refuel Area type " +

HeadString) ;

OUTPUT (" producing record Refuel Area type " + HeadString);

FindSHRec (HeadString, SHRec);

WriteLine(" ");

IF SHRec = NILREC
OUTPUT("No record Found of " + HeadString);
WriteLine("No record Found of " + HeadString);
HALT;

END 1IF;

OUTPUT (" got SHRec");

NEW (Rec) ;

Rec.AreaTypeName := SHRec.TopString;

OUTPUT ("AreaTypeName is " + Rec.AreaTypeName) ;
WriteLine("AreaTypeName is " + Rec.AreaTypeName) ;
index := 1;

Rec.NumOfSpots := STRTOINT (SHRec.OwnedString([index]}) ;
WriteLine ("Number Of Spots is " + INTTOSTR(Rec.NumOfSpots));
INC(index) ;

Rec.DistAreaToShip := STRTOREAL(SHRec.Ownedstring[index]);

WritelLine("DistAreaToShip is " +
REALTOSTR (Rec.DistAreaToShip)) ;

124

INC (index) ;

NEW (Rec.SpotArray, 1l..Rec.NumOfSpots);
OUTPUT("index = " + INTTOSTR(index));

IF (Rec.NumOfSpots > 0)
i=1;
WHILE i <= Rec.NumOfSpots
NEW (Spot) ;

Char := SCHAR(SHRec.OwnedStringlindex], 1);

CASE Char
WHEN 'T','t' : Spot.RefuelSpotFree := TRUE;
WHEN 'F','f' : Spot.RefuelSpotFree := FALSE;
END CASE;

WriteLine("Spot "+ INTTOSTR(i) + " is Free (T/F) " +
BooleanToStr (Spot .RefuelSpotFree)) ;
OUTPUT("Spot "+ INTTOSTR(i) + " is Free (T/F) " +
Char) ;

Rec.SpotArray (i} := Spot;
i:=1 4+ 1;
index := index + 1;
END WHILE;
END IF;
index := index;
Rec.FuelPumpRate := STRTOREAL(SHRec.OwnedString[index]) ;
WriteLine("FuelPumpRate is " + REALTOSTR(Rec.FuelPumpRate));
INC(index) ;
OUTPUT("finished reading RefuelArea type information");
RETURN (Rec) ;
END METHOD;

END OBJECT;

125

OBJECT RefuelTypelListObj;

VAR
Rec : RefuelTypeRecType;

BEGIN
IF RefuelTypeIOHandler = NILOBJ
NEW(RefuelTypelOHandler) ;
ASK RefuelTypelOHandler TO ReadRecs ("RFAType.dat");
END IF;

OUTPUT ("Beach handler instanciated and full of raw
records") ;
OUTPUT ("about to produce type record for " +
RefuelAreaType) ;
Rec := ASK RefuelTypelOHandler TO
ProduceRec (RefuelAreaType) ;
OUTPUT (" got the record complete ");
IF Rec <> NILREC
Add(Rec) ;
ELSE
OUTPUT (" never found record!");
END IF;

END METHOD;
END OBJECT;

END MODULE.

126

DEFINITION MODULE Builder;

Module Name: Builder Last Modified: 26 Jul 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: Defines the ObjectBuilderObj as well as the
four other Queue Objects required to build and store the
RoRo, Lighter, Beach, and FuelArea objects required for the
users scenario.

... }
FROM GrpMod IMPORT QueueObj;

FROM Ship IMPORT ROROODbJ;

FROM Lighter IMPORT LighterObj;

FROM Beach IMPORT BeachObj;

FROM Refuel IMPORT RefuelAreaObj;

TYPE

ObjectBuilderObj = OBJECT
ASK METHOD BuildObjects;

END OBJECT;

ShipBuilderObj = OBJECT (QueueObj [ANYOBJ : RORoObj])
ASK METHOD BuildShips;

END OBJECT;

LighterBuilderObj = OBJECT(QueueObj [ANYOBJ : LighterObjl)
ASK METHOD BuildLighters;

END OBJECT;

BeachBuilderObj = OBJECT (QueueObj [ANYOBJ : BeachObjl)
ASK METHOD BuildBeaches;

127

END OBJECT;
FuelAreaBuilderObj = OBJECT (QueueObj [ANYOBJ :
RefuelAreaObjl)
ASK METHOD BuildFuelAreas;
END OBJECT;

VAR

ObjectBuilder : ObjectBuilderObj;

ShipBuilder : ShipBuilderObj;
LighterBuilder : LighterBuilderObj;
BeachBuilder : BeachBuilderObj;

FuelAreaBuilder : FuelAreaBuilderObj;
END MODULE.

IMPLEMENTATION MODULE Builder;

Module Name: Builder Last Modified: 26 Jul 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: Implements the ObjectBuilderObj as well as the
four other Queue Objects required to build and store the
RORoO, ,Lighter, Beach, and FuelArea objects required for the
users scenario.

.. }

FROM Ship IMPORT ROROObJ;

FROM Lighter IMPORT LighteroObj;

FROM Beach IMPORT BeachObj;

FROM Refuel IMPORT RefuelAreaObj;

FROM ShpList IMPORT MasterShipTypelList, ShipTypeRecType;

FROM LtList IMPORT MasterLighterTypeList,
LighterTypeRecType;

FROM BchList IMPORT MasterBeachTypelList, BeachTypeRecType;

128

FROM RFAList IMPORT MasterRefuelTypelist,
RefuelTypeRecType;
FROM ShpName IMPORT MasterShipNameList;
FROM LtName IMPORT MasterLighterNamelList;
FROM BchName IMPORT MasterBeachNameList;
FROM RFAName IMPORT MasterRefuelNameList;
FROM ShpName IMPORT ShipNameRecType;
FROM LtName IMPORT LighterNameRecType;
FROM BchName IMPORT BeachNameRecType;
FROM RFAName IMPORT RefuelNameRecType;
FROM WriteLine IMPORT Writeline;
FROM SLCP IMPORT WaitForShipQueue;
FROM Convert IMPORT LighterNameTypeToStr;
FROM RepMngr IMPORT RepManader;

OBJECT ObjectBuilderObj;

NEW (ShipBuilder) ;
ASK ShipBuilder TO BuildShips;

NEW(LighterBuilder) ;
ASK LighterBuilder TO BuildLighters;

NEW (BeachBuilder) ;
ASK BeachBuilder TO BuildBeaches;

NEW (FuelAreaBuilder) ;
ASK FuelAreaBuilder TO BuildFuelAreas;

129

END METHOD;

END OBJECT;

VAR

Rec : ShipTypeRecType;
RORO : ROROODbjJ;

BEGIN

NEW (Rec) ;
NEW (RORO) ;

Rec := ASK MasterShipTypelList First();

{

WriteLine("Building ship " + Rec.ShipTypeName) ;
WriteLine(" ");

}

WHILE RecC <> NILREC

ASK RORO TO GetShipSetup(Rec.ShipTypeName, Rec.TypesShip,
Rec.DistanceFromBLCP,
Rec.NumOfSpots, Rec.SpotArray,
Rec.NumOfLoLoVehicles,
Rec.NumOfRRDFVehicles,
Rec.NumOfAnySpotVehicles) ;

Add (RORO) ;

130

NEW (RORO) ;
Rec := ASK MasterShipTypelList Next (Rec);
END WHILE;

END METHOD;

END OBJECT;

VAR

Rec : LighterTypeRecType;
Lighter : LighterObj;

BEGIN

{

WriteLine("Building Lighter ");
WriteLine(" ");

}

NEW (Rec) ;
NEW (WaitForShipQueue) ;
NEW(Lighter) ;

Rec := ASK MasterLighterTypeList First();
WHILE ReC <> NILREC
ASK Lighter TO GetLighterSetup(Rec.ID,

Rec.LighterTypeName,
Rec.SpotRequired, Rec.SpeedMax,
Rec.SpeedFull, Rec.MaxLoad,
Rec.FuelCap, Rec.BurnRate,
Rec.MinFuel) ;

131

Add (Lighter) ;
ASK WaitForshipQueue TO Add(Lighter);

{
WriteLine("Number in ship Q is " +
INTTOSTR (ASK WaitForShipQueue numberlIn) + "
Lighter Name= " +
LighterNameTypeToStr (ASK Lighter
LighterTypeName)
+ " LighterlID = " + ASK Lighter LighterlD);
}
NEW (Lighter) ;
Rec := ASK MasterLighterTypelList Next (Rec);
END WHILE;
END METHOD;
END OBJECT;
{==}
OBJECT BeachBuilderObj;
oo)
ASK METHOD BuildBeaches;
o }
VAR

Rec : BeachTypeRecType;
Beach : BeachObj;

BEGIN

{

WriteLine("Building Beach ");
WriteLine(" ");

}

132

NEW(Rec) ;
NEW (Beach) ;

Rec := ASK MasterBeachTypeList First();
WHILE Rec <> NILREC
ASK Beach TO GetBeachSetup(Rec.ID, Rec.BeachTypeName,
Rec.NumOfSpots, Rec.SpotArray,
Rec.DistanceFromSLCP,
Rec.DistBeachToArea) ;
Add(Beach) ;

NEW (Beach) ;
Rec := ASK MasterBeachTypeList Next (Rec);
END WHILE;

END METHOD;

END OBJECT;

VAR

Rec : RefuelTypeRecType;
RefuelArea : RefuelAreaObj;

BEGIN

{

WriteLine ("Building RefuelArea ");
WriteLine(" ");

}

133

NEW (Rec) ;
NEW (RefuelArea) ;

Rec := ASK MasterRefuelTypelList First();
WHILE ReCc <> NILREC
ASK RefuelArea TO GetRefuelAreaSetup(Rec.AreaTypeName,
Rec.NumOfSpots,
Rec.DistAreaToShip,
Rec.SpotArray, Rec.FuelPumpRate);

Add (RefuelArea) ;
NEW (RefuelArea) ;
Rec := ASK MasterRefuelTypeList Next (Rec);
END WHILE;
END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE RepMngr;

{ ...
Module Name: RepMngr Last Modified: 26 Jul 93
Author: M. Bailey Modified By: J. S. Noel

Prof. NPG Lt. USN
DESCRIPTION: Defines the replication manager (RepMngrObj)
for initialization and operation of the simulation.

TYPE
RepMngrObj = OBJECT

MaxNumberOfReps : INTEGER;

134

Iteration : INTEGER;

Done : BOOLEAN;
OutputToScreen : BOOLEAN;
SeedAlfa : INTEGER;
SeedBravo : INTEGER;

ASK METHOD ObjInit;
ASK METHOD ChangeRunParms;
ASK METHOD PrepForRep;
ASK METHOD Replicate;
ASK METHOD ResetForNextRun;
END OBJECT;
VAR
RepManager : RepMngrObj;

END MODULE.

IMPLEMENTATION MODULE RepMngr;

Module Name: RepMngr
Author: M. Bailey
Prof. NPG

lLast Modified: 26 Jul 93
Modified By: J. S. Noel
Lt. USN

DESCRIPTION: Implements the replication manager
(RepMngrObj) for initialization and operation of the

simulation.

FROM WriteLine IMPORT WritelLine;

FROM SimMod IMPORT StartSimulation, ResetSimTime;

FROM CRTMod IMPORT ClearScreen;
FROM IOMod IMPORT ReadKey;
FROM Ship IMPORT ROROODbjJ;
FROM SLCP IMPORT SLCP;

FROM BLCP IMPORT BLCP;

135

FROM FuelCP IMPORT FuelCP;

FROM Builder IMPORT ShipBuilder;

FROM Stats IMPORT Stats;

FROM Global IMPORT RandTimel, RandTime2;

OBJECT RepMngroObj;

(= e oo)
ASK METHOD ObjInit;

R R R R L L e e R PR E PR }
BEGIN

MaxNumberOfReps := 1;
Iteration := 0;

Done := FALSE;
OutputToScreen := FALSE;
SeedAlfa := 123456;
SeedBravo := 678912;

END METHOD;

oo)
ASK METHOD ChangeRunParms;

(o)
VAR

Ch : CHAR;

Seedl : INTEGER;
Seed2 : INTEGER;

BEGIN

ClearScreen;
OUTPUT; OUTPUT,;

.............................

OUTPUT; OUTPUT;

136

OUTPUT("The number of replications desired is ...");

OUTPUT; OUTPUT;
OUTPUT ("227222") ;

OUTPUT; OUTPUT;
INPUT (MaxNumberOfReps) ;

ClearScreen;

OUTPUT; OUTPUT;
OUTPUT ("222222272222222722222222222222222222222222222?22222?2") ;

...

OUTPUT,; OUTPUT;
OUTPUT("Do you want output displayed on the screen?");

OUTPUT; OUTPUT;
OUTPUT (" 2222222222222 22222222222222222222222222222222222?2") ;

...

OUTPUT,; OUTPUT;

Ch := ReadKey();

IF (Ch = 'y') OR (Ch = '¥Y') OR (Ch = 't') OR (Ch = 'T')
OutputToScreen := TRUE;

END IF;

ClearScreen;

OUTPUT; OUTPUT;
OUTPUT ("?222?2?") ;

...

OUTPUT; OUTPUT;
OUTPUT("Do you want to input seeds?");

OUTPUT; OUTPUT;
OUTPUT ("??222?2");

...

OUTPUT,; OUTPUT;

Ch := ReadKey();

IF (Ch = 'y') OR (Ch = 'Y') OR (Ch = 't') OR (Ch = 'T"')
OUTPUT ("Input seed number 1. MUST BE INTEGER ");
INPUT (SeedAlfa) ;

OUTPUT ("Input seed number 2. MUST BE INTEGER ");
INPUT (SeedBravo) ;

END IF;

NEW (RandTime1l) ;
NEW (RandTime2) ;

137

ASK RandTimel TO SetSeed(Seedalfa);
ASK RandTime2 TO SetSeed(SeedBravo) ;

END METHOD;

VAR
RORO : ROROODbjJ;
BEGIN

FOR Iteration := 1 TO MaxNumberOfReps
ResetSimTime (0.0);
WriteLine(" replication " + INTTOSTR(Iteration) +
" ")
ASK SELF TO PrepForRep;
ASK SELF TO ResetForNextRun;

IF (Iteration = MaxNumberOfReps)

Done := TRUE;
WriteLine("//RepManager// Done = TRUE");
END 1IF;

OUTPUT("Simulation clock started.");

WriteLine(" CLOCK STARTS FOR REP " +
INTTOSTR(Iteration) + " ");
StartSimulation;
WriteLine(" CLOCK STOPS FOR REP " +
INTTOSTR(Iteration) + " ");
END FOR;

END METHOD;

138

BEGIN

IF (Iteration = 1)
NEW (SLCP) ;
NEW (BLCP) ;
NEW (FuelCP) ;

NEW(Stats) ;
END IF,;

END METHOD;

VAR
RORO : ROROODbJ;
BEGIN

WriteLine("----Reset For Next Run----");

IF (NOT Done)
RORO := ASK ShipBuilder First();
WHILE RORO <> NILOBJ
ASK RORO TO StartTheShow;

RORO := ASK ShipBuilder Next (RORO) ;
END WHILE;

END 1IF;

139

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MCDULE Global;

T
Module Name: Global Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN
DESCRIPTION: Defines Global types used in the simulation.

FROM RandMod IMPORT RandomObj;

TYPE

SpotType = (LCU, CWF, LoLo);

SpotRecType = RECORD
SpotClassification SpotType;
SpotFree BOOLEAN;
TotalIdleTime REAL;

END RECORD;

RefuelSpotRecType = RECORD
RefuelSpotFree BOOLEAN;

END RECORD;

SpotIdleTimeRecType = RECORD
StartTime REAL;
EndTime REAL;

END RECORD;

140

NameRecType = RECORD
Name : STRING;
END RECORD;

SpotIdleTimeArrayiype = ARRAY INTEGER OF
SpotIdleTimeRecType;

FileNameType = STRING;

DestinationType = (Ship, Bch, Fuel, RefuelFromBeach,
ShipFromRefuel) ;

SeedArrayType = ARRAY INTEGER OF INTEGER;
VAR

RandTimel : RandomObj;
RandTime2 : RandomObj;

END MODULE.

IMPLEMENTATION MODULE Global;

Module Name: Global Last Modified: 18 Jun 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: Implements Global types used in the simulation.
{ The functioning components of Global ar in the Definition
Module. }

END MODULE.

141

DEFINITION MODULE Ship;

Module Name: Ship Last Modified: 18 Jun 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: Defines a RoRo (Ship) object.

FROM ShpList IMPORT SpotArrayType;

FROM Global IMPORT SpotldleTimeArrayType, SpotType;
FROM Lighter IMPORT LighteroObj;

TYPE

ShipTypeType = (SSR, NSSR);

ROROObj = OBJECT

ShipName : STRING;
ShipType : ShipTypeType;
DistanceFromBLCP : REAL;
NumSpots : INTEGER;
ShipSpot : SpotArrayType;
NumLoLoVehicles : INTEGER;
NumRRDFVehicles : INTEGER;
NumAnySpotVehicles : INTEGER;
PermNumLoOLO : INTEGER;
PermNumRRDF : INTEGER;
PermNumAnySpot : INTEGER;
LoadSize : INTEGER;
ShipSpotIdleTime : SpotlIdleTimeArrayType;
LastLoad : BOOLEAN;

ASK METHOD ObjInit;

ASK METHOD StartTheShow;

ASK METHOD GetShipSetup(IN Name : STRING;
IN Type : ShipTypeType;
IN Numl : REAL;

142

IN Num2 : INTEGER;

IN Array : SpotArrayType;
IN Num3 : INTEGER;

IN Num4 : INTEGER;

IN NumS5 : INTEGER);

ASK METHOD LogIdleShipSpotTime(IN index : INTEGER;
IN InOutSpotTime : REAL;
IN Spotldle : BOOLEAN) ;
ASK METHOD MakeLoad (IN Lighter : LighterObj;
IN index : INTEGER)};
ASK METHOD SetSpotFree(IN index : INTEGER);
ASK METHOD CheckSpots(IN SpotTyp : SpotType;
OUT SpotAvail : BOOLEAN;
OUT index : INTEGER);
ASK METHOD OccupySpot (IN index : INTEGER);
ASK METHOD ResetShipStats;

END OBJECT;

VAR
RORO : ROROObj;

END MODULE.

IMPLEMENTATION MODULE Ship;

Module Name: Ship Last Modified: 18 Jun 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: Implements a RoRo (Ship) object.

FROM ShpList IMPORT SpotArrayType;

FROM Global IMPORT ALL SpotType, SpotRecType,
ALL SpotlIdleTimeRecType;

FROM SimMod IMPORT SimTime;

143

FROM SLCP IMPORT SLCP;

FROM Lighter IMPORT LighterObj;

FROM WritelLine IMPORT WriteLine;

FROM Convert IMPORT BooleanToStr, SpotTypeToStr;

OBJECT ROROObj;

{--- o }
ASK METHOD ObjInit;

{---rrr e }
BEGIN

LastLoad := FALSE;

END METHOD;

oo }
ASK METHOD StartTheShow;
T e TR T EPPEPP RS }
VAR

i : INTEGER;
BEGIN

FOR i := 1 TO HIGH(ShipSpot)

{

WriteLine("SpotFree for spot " + INTTOSTR(i) + " is " +
BooleanToStr (ShipSpot [i] . SpotFree)) ;

ASK SLCP TO GetLighter (ShipSpot[i].SpotClassification, i,
SELF) ;
END FOR;

END METHOD;

144

ASK METHOD GetShipSetup(IN Name : STRING;
IN Type : ShipTypeType;
IN Numl : REAL;
IN Num2 : INTEGER;
IN Array : SpotArrayType;
IN Num3 : INTEGER;
IN Num4 : INTEGER;
IN NumS5 : INTEGER);

VAR
i : INTEGER;
Rec : SpotldleTimeRecType;

BEGIN

ShipName := Name;

{

WriteLine("//GetShipSetup// ShipName = " + ShipName);
}

ShipType := Type;

DistanceFromBLCP :. Numil;

NumSpots := Num2;

NEW(ShipSpot, 1..NumSpots);
ShipSpot := Array;

{

WriteLine(ShipName + " Spot " + INTTOSTR(1l) + " SpotType " +
SpotTypeToStr (ShipSpot [1] .SpotClassification));

}

NumLoLoVehicles := Num3;
NumRRDFVehicles := Num4;
NumAnySpotVehicles := Num5;

145

NEW (ShipspotIdleTime, 1..NumSpots);

FOR i := 1 TO NumSpots
ShipsSpot [i] .TotalldleTime := 0.0;

NEW (Rec) ;

Rec.StartTime := 0
Rec.EndTime := 0.0
ShipSpotIdleTime[i

.0;

; := Rec;
END FOR;

PermNumLoLo := NumLoLoVehicles;

PermNUmRRDF := NumRRDFVehicles;
PermNumAnySpot := NumAnySpotVehicles;

END METHOD;

ASK METHOD LogIdleShipSpotTime(IN index : INTEGER;
IN InOutSpotTime : REAL;
IN Spotldle : BOOLEAN) ;

WriteLine("LogldleSpotTime fired on " + ShipName);

}

IF Spotldle

ShipSpotIidleTime [index] .StartTime := InOutSpotTime;
{
WriteLine("Spot " + INTTOSTR(index) + " Idle at " +
REALTOSTR (InOutSpotTime)) ;
WriteLine("™ ");
}

146

ELSE

ShipSpotIdleTime[index] .EndTime := InOutSpotTime;
{
WriteLine("Spot " + INTTOSTR(index) + " Occupied at " +
REALTOSTR (InOutSpotTim=)) ;
WriteLine(" ");
}

ShipSpot [index] .TotalIdleTime :=
ShipSpot [index] .TotalldleTime +
(ShipSpotIdleTime [index] .EndTime -
ShipSpotldleTime [index] .StartTime) ;

END IF;

END METHOD;

ASK METHOD Makeload(IN Lighter : LighterObj;
IN index : INTEGER);

VAR
LoadSize : INTEGER;

BEGIN

{

WriteLine("MakelLoad fired for spot " + INTTOSTR(index) +
" on " + ShipName);
}

ASK SELF TO OccupySpot (index) ;
LoadSize := ASK Lighter MyloadSize;

IF (ShipSpot [index] .SpotClassification = LoLo)
IF (NumLoLoVehicles > 0)

147

IF (NumLoLoVehicles <« LoadSize)
LoadSize := LoadSize - NumLoLoVehicles;

NumLoLoVehicles := 0;

IF (NumAnySpotVehicles > 0)

IF (NumAnySpotVehicles < LoadSize)
NumAnySpotVehicles := 0;
LastLoad := TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LastLoad, SELF);

ELSE { NumAnySpotVehicles > LoadSize }
NumAnySpotVehicles := NumAnySpotVehicles -

LoadSize;

END IF;

ELSE { NumAnySpotVehicles = 0 }
LastLoad := TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LastLoad, SELF);

END IF;

ELSE { NumLoLoVehicles > LoadSize }
NumLoLoVehicles := NumlLoLoVehicles - LoadSize;

END IF;
ELSE { NumLoLoVehicles = 0 }

IF (NumAnySpotVehicles > 0)
IF (NumAnySpotVehicles < LoadSize)
NumAnySpotVehicles := 0;
LastLoad := TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LastLoad, SELF);
ELSE { NumAnySpotVehicles > LoadSize }
NumAnySpotVehicles := NumAnySpotVehicles -
LoadSize;

END 1IF;

ELSE { NumAnySpotVehicles = 0 }

148

LastLoad := TRUE;
ASK SLCP TO SetShipStatus;

ASK Lighter TO SetLoadStatus(LastLoad, SELF);
END IF;
END IF;

ELSE { ShipSpot [index] .SpotClassification = LCU or CWF }

IF (NumRRDFVehicles > 0)
IF (NumRRDFVehicles < LoadSize)

LoadSize := LoadSize - NumRRDFVehicles;
NumRRDFVehicles := 0;

IF (NumAnySpotVehicles > 0)

IF (NumAnySpotVehicles < LoadSize)
NumAnySpotVehicles := 0;
LastLoad := TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LastLoad, SELF);

ELSE { NumAnySpotVehicles > LoadSize }
NumAnySpotVehicles := NumAnySpotVehicles -

LoadSize;
END IF;

ELSE { NumAnySpotVehicles = 0 }
LastLoad := TRUE;
ASK SLCP TO SetShipStatus;

ASK Lighter TO SetLoadStatus(LastlLoad, SELF);
END IF;

ELSE
NumRRDFVehicles

NumRRDFVehicles - LoadSize;

END IF;

ELSE { NumRRDFVehicles = 0 }
IF (NumAnySpotVehicles > 0)
IF (NumAnySpotVehicles < LoadSize)
NumAnySpotVehicles := 0;

149

LastLoad := TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LastLoad, SELF);
ELSE { NumAnySpotVehicles > LoadSize }
NumAnySpotVehicles := NumAnySpotVehicles -
LoadSize;
END IF;

ELSE { NumAnySpotVehicles = 0 }
LastLoad := TRUE;
ASK SLCP TO SetShipStatus;
ASK Lighter TO SetLoadStatus(LastLoad, SELF);
END IF;
END IF;
END IF;

{

WriteLine ("NumLoLoVehicles " 4+ INTTOSTR (NumlLoLoVehicles));
WriteLine ("NumRRDFVehicles = " + INTTOSTR (NumRRDFVehicles));
WritelLine ("NumAnySpotVehicles = " +

INTTOSTR (MumAnySpotVehicles)) ;
}

TELL Lighter TO OnLoad (SELF) ;

END METHOD;

VAR
Idle : BOOLEAN;

BEGIN

{

WriteLine("SetSpotFree fired for spot " + INTTOSTR(index) +
" on " + ShipName);
}

150

IF (NOT LastLoad)
ShipSpot [index] .SpotFree := TRUE;
Idle := ShipSpot [index] .SpotFree;
ASK SLCP TOGetLighter (ShipSpot [index] .SpotClassification,
index, SELF);
END IF,;

ASK SELF TO LogldleShipSpotTime(index, SimTime(), Idle);

END METHOD;

ASK METHOD CheckSpots(IN SpotTyp : SpotType;
OUT SpotAvail : BOOLEAN;
OUT index : INTEGER);

i : INTEGER;
BEGIN

{

WriteLine("CheckSpots Fired on " + ShipName) ;

}

SpotAvail := FALSE;

FOR i := 1 TO HIGH(ShipSpot)
IF (ShipSpot[i}].SpotClassification = SpotTyp) AND
(ShipSpot [i] . SpotFree)

SpotAvail := TRUE;
index := i;
ShipSpot (i] . SpotFree := FALSE;
EXIT;
END IF;
END FOR;

151

END METHOD;

VAR
Idle : BOOLEAN;

BEGIN

{

WriteLine("Occupy spot fired in RoRo " + ShipName);

}

ShipSpot [index] .SpotFree := FALSE;
Idle := ShipSpot [index] .SpotFree;
ASK SELF TO LogldleShipSpotTime(index, SimTime(), Idle);

END METHOD;

- o m)
ASK METHOD ResetShipStats;
e TP ETEEREREEEE }
VAR

i : INTEGER;

BEGIN

{

WriteLine("ResetShipStats fired on " + ShipName) ;

}

FOR i := 1 TO HIGH(ShipSpot)
ShipSpot [i] .SpotFree := TRUE;

152

ShipSpotIldleTime(i] .StartTime :=
ShipSpotldleTime[i] .EndTime :-=
END FOR;

ShipSpot [i] .TotalIdleTime := 0.0;
= 0;
0.

0.
0,
NumLoLoVehicles PermNumLoOLO;

NumRRDFVehicles PermNumRRDF;
NumAnySpotVehicles := PermNumAnySpot;

LastLoad := FALSE;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE SLCP;

Module Name: SLCP Last Modified: 18 Jun 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: Defines the Ships Lighterage Control Point
Object (SLCPObJ). After a Lighter CastsaadClears the ship
it asks the RoRoObj to SetSpotFree. This method fires the
GetLighter method in SLCPObj. SLCPObj then pops the first
appropriate lighter off of theAwaitingShipQueue and directs
the lighter to ApproachAndMoor to the RRDF, where the
onload of vehicles can begin.

FROM GrpMci IMPORT QueueObj;
FROM Global IMPORT SpotType;
FROM Lighter IMPORT LighterObj;
FROM Ship IMPORT ROROODbJ;

TYPE

153

ShipboneRecType = RECORD
ShipDone : BOOLEAN;
END RECORD;
ShipDoneArrayType = ARRAY INTEGER OF ShipDoneRecType;

AwaitingShipQueueObj = OBJECT (QueueObj [ANYOBJ: LighterObjl)
END OBJECT;

SLCPObj = OBJECT

NumLighter : INTEGER;
NumShip : INTEGER;
ShipStatusIndex : INTEGER;
ShipsDone : ShipDoneArrayType;
AllDone : BOOLEAN;

ASK METHOD ObjInit;
ASK METHOD SetShipStatus;
ASK METHOD GetSpot (IN Lighter : LighterObj);
ASK METHOD GetLighter (IN Spot : SpotType;
IN index : INTEGER;
IN RORO : ROROODbjJ) ;
ASK METHOD ResetSLCP;

END OBJECT;

VAR

WaitForShipQueue : AwaitingShipQueueObj;
SLCP : SLCPObj;

END MODULE.

154

IMPLEMENTATION MODULE SLCP;

{ ...
Module Name: SLCP Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements a Ship Lighter Control Point (SLCP)
object.

___ }
FROM Global IMPORT ALL SpotType, ALL DestinationType;
FROM Lighter IMPORT LighterObj; '

FROM Ship IMPORT ROROODbj;

FROM SimMod IMPORT SimTime;

FROM Builder IMPORT ShipBuilder;

FROM WriteLine IMPORT WriteLine;

FROM Convert IMPORT LighterNameTypeToStr;

FROM Stats IMPORT Stats;

FROM Builder IMPORT ShipBuilder, LighterBuilder;

FROM BLCP IMPORT WaitForBeachQueue;

OBJECT SLCPObj;

oo o }
ASK METHOD ObjInit;
o)
VAR

i : INTEGER;

Rec : ShipDoneRecType;

BEGIN
AllDone := FALSE;
ShipStatusIndex := 1;

NumLighter := ASK LighterBuilder numberiIn;
NumShip := ASK ShipBuilder numberlIn;

155

NEW (Rec) ;
NEW (ShipsDone, 1..NumShip);

FOR i := 1 TO HIGH(ShipsDone)

NEW (RecC) ;

Rec.ShipDone := FALSE;

Shipsbone[i] := Rec;
END FOR;
END METHOD;
oo)
ASK METHOD SetShipStatus;
e T R LR TEREEPTS)
VAR

i : INTEGER;
RORO : ROROODbjJ;

BEGIN
ShipsDone [ShipStatusIndex] .ShipDone := TRUE;

IF (ShipStatusIndex = NumShip)
AllDone := TRUE;

IF (AllDone) AND (ASK WaitForShipQueue numberlIn =
NumLighter)
WriteLine("---Last Lighter in the Q, Dumping
Stats.----");
RORO := ASK ShipBuilder First();
WHILE RORO <> NILOBJ
FOR i := 1 TO (ASK RORO NumSpots)
ASK RORO TO LogldleShipSpotTime(i,SimTime() , FALSE) ;
END FOR;

RORO := ASK ShipBuilder Next (RORO);

156

END WHILE;

ASK Stats TO DumpStats(S.mTime());

ELSE
INC(ShipStatusIndex) ;

END 1IF;

END METHOD;

{ ..
ASK METHOD GetSpot (IN Lighter LighteroObj) ;
T L T
VAR

SnotReq : SpotType;

i : INTEGER;

index : INTEGER;

SpotAvail : BOOLEAN;

LogIn : BOOLEAN;

QType : BOOLEAN;

RORO : ROROObJ;

Dest : DestinationType;

BEGIN

{

WriteLine("GetSpot Fired in SLCP ");

}

SpotAvail := FALSE;

SpotReq := ASK Lighter LighterSpot;

Dest := Ship;

RORO := ASK ShipBuilder First();
WHILE RORO <> NILOBJ

157

IF (ASK RORo LastLoad)
RORO := ASK ShipBuilder Next (RORO);

ELSE
ASK RoRO TO CheckSpots (SpotReq, SpotAvail, 1i);

IF SpotAvail

TELL Lighter TO ApproachAndMoor (i, Dest, RORO);
EXIT;

ELSE
RORO := ASK ShipBuilder Next (RORO) ;

END IF;
END 1IF;

END WHILE;

IF (NOT SpotAvail)
ASK WaitForShipQueue TO Add(Lighter);
LogIn := TRUE; { adding to Q }
QType := TRUE; { Q type = ship }
ASK Lighter TO LogQueueTime (SimTime(), LogIn, QType);

END 1IF;

IF (AllDone) AND (ASK WaitForShipQueue numberIn =
NumLighter)
WriteLine("---Last Lighter in the Q, Dumping
Stats.----");

RORO := ASK ShipBuilder First();
WHILE RORO <> NILOBJ
FOR i := 1 TO (ASK RORO NumSpots)

ASK RORO TO LogIdleshipSpotTime(i,SimTime(), FALSE) ;

158

END FOR;
RORO := ASK ShipBuilder Next (RORO);
END WHILE;
ASK Stats TO DumpStats(SimTime());

END IF;

END METHOD;

ASK METHOD GetLighter (IN Spot : SpotType;
IN index : INTEGER;
IN RORO : ROROODbj);

VAR

Lighter : LighterObj;

Logln : BOOLEAN;

QType : BOOLEAN;

Dest : DestinationType;
BEGIN

{

WriteLine("GetLighter Fired in SLCP. Index = " +
INTTOSTR (index)) ;

}

Dest := Ship;

{

WriteLine("Number in ship Q At SLCP is " +
INTTOSTR (ASK WaitForShipQueue numberiIn)) ;
}

159

Lighter := ASK WaitForShipQueue First();

{1f spot available is a LoLo spot then take the first
available from the queue, ELSE, the lighter SpotType must
match the SpotType available for mooring to the RRDF.}

IF (Spot = LoLo)

IF Lighter <> NILOBJ
ASK WaitForShipQueue TO RemoveThis(Lighter);
LogIn := FALSE; { Not entering ship Q }
QType := TRUE; { Q type = ship }
ASK Lighter TO LogQueueTime (SimTime (), LogIn,QType) ;
TELL Lighter TO ApproachAndMoor (index, Dest, RORO);

END IF;

ELSE
WHILE Lighter <> NILOBJ

IF (ASK Lighter LighterSpot = Spot)
ASK WaitForShipQueue TO RemoveThis(Lighter);
LogIn := FALSE; { Not entering ship Q }
QType := TRUE; { Q type = ship }
ASK Lighter TO LogQueueTime(SimTime (), LogIn, QType);
TELL Lighter TO ApproachAndMoor (index, Dest, RORO);
EXIT;
END IF;

Lighter := ASK WaitForShipQueue Next (Lighter);

END WHILE;
END IF;

END METHOD;

160

i : INTEGER;
BEGIN

AllDone := FALSE;
ShipStatusIndex := 1;

FOR i := 1 TO HIGH(ShipsDone)
Shipbone[i] .ShipDone := FALSE;

END FOR;
END METHOD;
END OBJECT;

END MODULE.

DEFINITION MODULE Lighter;

- m et e e
Module Name: Lighter Last Modified: 17 Jul 93
Author: J. S. Noel

Lt. USN
DESCRIPTION: Defines a Lighter (Smallcraft or boat) object.

FROM Global IMPORT SpotType, DestinationType;
FROM Ship IMPORT ROROODbJ;

161

TYPE

LighterNameType = (LCU1466 ,LCU1610, LCU2000, CWF11,
CWF31, LSV);
LighterObj = OBJECT
LighterTypeName LighterNameType;
LighteriD STRING;
LighterSpot SpotType;
MaxSpeed REAL;
FullLoadSpeed REAL;
MyLoadSize INTEGER;
ShipiD RORoODb] ;
FuelCapacity REAL;
CurrentFuel REAL;
FuelBurnRate REAL;
MinFuel REAL;
MinFuelPercent REAL;
TransitDistance REAL;
TimeInShipQueue REAL;
TimeInBeachQueue : REAL;
TimeToTotalOffload REAL;
LoadStatus BOOLEAN;
ShipSpotIndex INTEGER;
BeachSpotIndex INTEGER;
RefuelSpotIndex INTEGER;
InShipQTime REAL;
OutShipQTime REAL;
InBeachQTime REAL;
OutBeachQTime REAL;

162

CwWF21,

ASK METHOD ObjInit;
ASK METHOD GetLighterSetup(IN ID : STRING;
IN Name : LighterNameType;
IN Sp : SpotType;
IN Numl : REAL;
IN Num2 : REAL;
IN Num3 : INTEGER;
IN Num4 : REAL;
IN NumS : REAL;
IN Numé : REAL);

ASK METHOD LogQueueTime (IN InOutQTime : REAL;
IN EnterQ : BOOLEAN;
IN ShipQ : BOOLEAN);

ASK METHOD SetLoadStatus(IN Status : BOOLEAN;
IN Vessel : ROROODbj);

ASK METHOD BurnFuel (IN BurnTime : REAL);

ASK METHOD ResetLighterStats;

TELL METHOD ApproachAndMoor (IN index : INTEGER;
IN Dest : DestinationType;
IN Obj : ANYOBJ);
TELL METHOD OnLoad(IN RORO : ROROObLJ) ;
TELL METHOD CastAndClear (IN Berth : DestinationType,
IN Obj : ANYORBJ);
TELL METHOD TransitTo(IN Dest : DestinationType;
IN Obj : ANYOBJ);
TELL METHOD OffLoad(IN Cbj : ANYORJ);
TELL METHOD Refuel (IN Obj : ANYOBJ);

END OBJECT;
VAR
Lighter : LighterObj;

END MODULE.

163

IMPLEMENTATION MODULE Lighter;

T T e
Module Name: Lighter Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements a Lighter (Boat) object.

... }
FROM MathMod IMPORT EBXP;

FROM Ship IMPORT ROROObj, ALL ShipTypeType;

FROM Beach IMPORT BeachObj;

FROM Refuel IMPORT RefuelAreaObj, RefuelArea;

FROM SLCP IMPORT SLCP;

FROM BLCP IMPORT BLCP;

FROM FuelCP IMPORT FuelCP;

FROM SimMod IMPORT SimTime;

FROM Global IMPORT ALL DestinationType, ALL SpotType;
FROM Stats IMPORT Stats;

FROM WriteLine IMPORT WriteLine;

FROM Convert IMPORT LighterNameTypeToStr, BeachTypeToStr;
FROM RepMngr IMPORT RepManager;

OBJECT LighterObj;
e Ee e L L L L TR LR EERTETEERPREER P)
ASK METHOD ObjInit;
o)
BEGIN

TimeInShipQueue := 0.0;

TimelInBeachQueue := 0.0;

InShipQTime = 0.0;

OutShipQTime = 0.0;

InBeachQTime = 0.0;

OutBeachQTime := 0.0;

le64

TimeToTotalOffload := 0.0;
LoadStatus := FALSE;
ShipSpotIndex := 0;
BeachSpotIndex := 0
RefuelSpotIndex
TransitDistance

]
O O ~

END METHOD;

ASK METHOD GetLighterSetup(IN ID : STRING;
IN Name : LighterNameType;
IN Sp : SpotType;
IN Numl : REAL;
IN Num2 : REAL;
IN Num3 : INTEGER;
IN Num4 : REAL;
IN Num5 : REAL;
IN Numé : REAL);

LT T e LR P PR
BEGIN

LighterID :=1ID;

LighterTypeName :=Name;

LighterSpot :=8Sp;

{

WriteLine("//GetLighterSetup// LighterTypeName = " +
LighterNameTypeToStr (LighterTypeName) +
» LighterID = " + LighterlID);

}

MaxSpeed :=Numil;
Fulll.cadSpeed :=Num2;
MyLoadSize :=Num3;

165

FuelCapacity :=Num4;
FuelBurnRate :=Nums;
MinFuelPercent :=Numé;

CurrentFuel := FuelCapacity;
MinFuel := FuelCapacity * MinFuelPercent;
WriteLine(® MinFuel = " + REALTOSTR(MinFuel));

END METHOD;

ASK METHOD LogQueueTime(IN InOutQTime : REAL;
IN EnterQ : BOOLEAN;
IN ShipQ : BOOLEAN) ;

WriteLine ("LogQueueTime fired on " +
LighterNameTypeToStr (LighterTypeName) +
"LighterID = " + LighterID);

IF (EnterQ) AND (ShipQ)
InShipQTime := 0.0;
InShipQTime := InOutQTime;
ELSIF (NOT EnterQ) AND (ShipQ)
OutShipQTime := 0.0;
OutShipQTime := InOutQTime;
ASK SELF TO BurnFuel (OutShipQTime - InShipQTime) ;
TimeInShipQueue := TimeInShipQueue + (OutShipQTime -
InShipQTime) ;
ELSIF (EnterQ) AND (NOT Shin)

InBeachQTime := 0.0;

InBeachQTime := InOutQTime;
ELSE

OutBeachQTime := 0.0;

OutBeachQTime := InOutQTime;

166

ASK SELF TO BurnFuel (OutBeachQTime - InBeachQTime);
TimeInBeachQueue := TimelInBeachQueue + (OutBeachQTime
- InBeachQTime) ;
END IF;

END METHOD;

ASK METHOD SetLoadStatus(IN Status : BOOLEAN;
IN Vessel : ROROObj);

WriteLine("SetLoadStatus fired on " +
LighterNameTypeToStr (LighterTypeName) +

"LighterID = " + LighteriID);
}

LoadStatus := Status;
ShipID := Vessel;

END METHOD;

BEGIN

CurrentFuel := CurrentFuel - (FuelBurnRate * BurnTime/60.0);
{

WriteLine("Burning fuel. CurrentFuel = " +

REALTOSTR (CurrentFuel)) ;
WriteLine(" ");

}

167

END METHOD;

T T
ASK METHOD ResetLighterStats;
(T T T e
BEGIN

{

WriteLine("ResetLighterStats " + LighterID);

}

InShipQTime = 0.0;

OutShipQTime = 0.0;

InBeachQTime = 0.0;

OutBeachQTime := 0.0;

TimeInShipQueue := 0.0;

TimeInBeachQueue := 0.0;

TimeToTotalOffload := 0.0;

LoadStatus := FALSE;

ShipSpotIndex := 0;

BeachSpotIndex := 0;

RefuelSpotIndex := 0;

TransitDistance := 0.0;

CurrentFuel := FuelCapacity;

END METHOD;

TELL METHOD ApproachAndMoor (IN index : INTEGER;
IN Dest : DestinationType;
IN Obj : ANYORJ);

- o m oo
VAR

ApproachAndMoorTime : REAL;

OperationalDelay : REAL;

RORO : ROROODbjJ;

Beach : BeachObij;

RefuelArea : RefuelAreaObj;

168

MeanCwF : REAL;
MeanLCU : REAL;

BEGIN

IF (Dest = Ship)
ShipSpotIndex := index;

RORO := Obj;

IF (ASK RORO ShipType = SSR)
MeanCWF := 10.5;
MeanLCU :=14.25;

ELSE { ShipType = NSSR }
MeanCWF :=8.0;
MeanLCU :=14.25;

END IF;

IF LighterSpot = CWF
ApproachAndMoorTime := ASK RandTimel Normal (MeanCWF,
3.22);
OperationalDelay := ASK RandTime2 Normal(2.0, 0.85);
ELSE { LighterSpot = LCU }
ApproachAndMoorTime := ASK RandTimel Normal (MeanLCU,
2.22);
OperationalDelay := ASK RandTime2 Normal(2.0, 0.85);

END 1F;

ELSIF (Dest = Bch)
BeachSpotIndex := index;

IF LighterSpot = CWF
ApproachAndMoorTime :=ASK RandTimel Normal(17.0,3.43);
OperationalDelay :=EXP(ASK RandTime2
Normal(1.0,0.85));

169

ELSE { LighterSpot = LCU }
ApproachAndMoorTime :=ASK RandTimel
Normal (11.0,4.298);
OperationalDelay :=ASK RandTime2 UniformReal(1.0,3.0);

END IF;
ELSE
{Dest = RefuelArea}
RefuelSpotIndex := index;
IF LighterSpot = CWF
ApproachAndMoorTime :=ASK RandTimel Normal(17.0,3.43);
OperationalDelay := ASK RandTime2 Normal(1i.0, 0.85);
ELSE { LighterSpot = LCU }
ApproachAndMoorTime :=ASK RandTimel
Normal (11.0,4.298);
OperationalDelay :=ASK RandTime2 UniformReal(1.0,3.0);
END IF;
END IF;

WAIT DURATION ApproachAndMoorTime + OperationalDelay
END WAIT;

ASK SELF TO BurnFuel (ApproachAndMoorTime +

OperationalDelay) ;
IF (Dest = Ship)
{
WriteLine ("ApproachAndMoor Ship " + " ShipSpot = " +
INTTOSTR (ShipSpotIndex) + " LighterID = " +
LighteriD) ;
WriteLine(" ApproachAndMoorTime = " +
170

REALTOSTR (ApproachAndMoorTime +
OperationalDelay)) ;

ASK RORO TO MakeLoad (SELF, ShipSpotIndex);
ELSIF (Dest = Bch)
{
WriteLine ("ApproachAndMoor Beach " 4+ " BeachSpot
INTTOSTR (BeachSpotIndex) + " LighterID
Lighter1D) ;
WriteLine (" ApproachAndMoorTime = " +
REALTOSTR (ApproachAndMoorTime +
OperationalDelay)) ;

i}
3
+

Beach := Obj;
ASK Beach TO OccupyBeachSpot (BeachSpotIndex) ;

TELL SELF TO OffLoad(Beach);
ELSE

{Dest = RefuelArea}
{
WriteLine ("ApproachAndMoor RefuelArea " + " RefuelAreaSpot
= " + INTTOSTR{RefuelSpotlIndex) +
" LighterID = " + LighterilD);
WriteLine(" ApproachAndMoorTime = " +
REALTOSTR (ApproachAndMoorTime +
OperationalDelay)) ;

RefuelArea := Obj;

TELL SELF TO Refuel (Refuelirea);
END IF;

END METHOD;

171

VAR

OnLoadTime : REAL;
OperationalDelay2 : REAL;
MeanCWF : REAL;
MeanLCU : REAL;
BEGIN

IF (ASK RORO ShipType = SSR)
MeanCkF := 16.0;
MeanLCU := 15.85;

ELSE { ShipType = NSSR }

MeanCWF := 25.0;
MeanLCU := 18.0;
END IF;

IF LighterSpot CWF
OnLoadTime ASK RandTimel Normal (MeanCWF, 3.87);
OperationalDelay2 :=EXP(ASK RandTime2

Normal(1.24,1.186));

OnLoadTime := OnLoadTime * FLOAT (MyLoadSize);

ELSIF LighterSpot = LCU
OnLoadTime := ASK RandTimel Normal (MeanLCU, 3.87);
OperationalDelay2 := ASK RandTime2 Normal(1.0, 0.42);

OnLoadTime := OnLoadTime * FLOAT (MyLoadSize);
ELSE

OnLoadTime := ASK RandTime2 Normal(10.25, 5.75);

OnLoadTime := OnLoadTime * FLOAT (MyLoadSize);
END IF;

WAIT DURATION OnLoadTime + OperationalDelay2
END WAIT;

172

{

WriteLine("Onlocad fired " +
LighterNameTypeToStr (LighterTypeName) +
" LighterID = " + LighterID + " Ship is " + ASK
RORO ShipName) ;

WriteLine("OnLoadTime = " + REALTOSTR(OnLoadTime +
OperationalDelay2));

WriteLine(" ");

}

ASK SELF TO BurnFuel (OnLoadTime + OperationalDelay2) ;

TELL SELF TO CastAndClear(Ship, RORO);

END METHOD;

TELL METHOD CastAndClear (IN Berth : DestinationType;
IN Obj : ANYQRJ) ;

T R
VAR

CastAndClearTime : REAL;

RORO : ROROODJ;

Beach : BeachObj;

RefuelArea : RefuelAreaObj;

MeanCWF : REAL;

MeanLCU : REAL;

Dest : DestinationType;

BEGIN

IF (Berth = Ship)
RORO := Obj;

173

IF (ASK RORO ShipType = SSR)
MeanCWF := 5.0;
MeanLCU :=2.0;

ELSE { ShipType = NSSR }
MeanCWF :=4.0;
MeanLCU :=4.0;

END IF;

IF LighterSpot = CWF
CastAndClearTime :=ASK RandTimel Normal (MeanCWwF,1.33);
ELSE { LighterSpot = LCU }
CastAndClearTime :=ASK RandTimel
UniformReal (MeanLCU, 2.5);

END IF;

ELSIF (Berth = Bch)
Beach := Obj;

IF LighterSpot = CWF
CastAndClearTime := ASK RandTimel Normal(9.9, 1.76);
ELSE { LighterSpot = LCU }
CastAndClearTime :=ASK RandTimel
UniformrReal (1.75,3.0);

END IF;

ELSE
{ Berth = RefuelArea }
IF LighterSpot = CWF
CastAndClearTime := ASK RandTimel Normal(9.9, 1.76);
ELSE { LighterSpot = LCU }

CastAndClearTime :=ASK RandTimel
UniformReal(1.75, 3.0);

END IF;

174

END IF;

WAIT DURATION CastAndClearTime
END WAIT;

ASK SELF TO BurnFuel (CastAndClearTime) ;
IF (Berth = Ship)

{If this Lighter has the last load, LoadStatus = T, then
the Lighter simply transits. If this is not the last
load, then the RoRo sets a Spot free thus starting the
whole lighter cycle for the next Lighter of the
appropriate type in the AwaitingShipQueue. }

WriteLine (LighterNameTypeToStr (LighterTypeName) + "
LighterID = " +
LighteriID + " CastAndClear Ship " + ASK RORO
ShipNamne) ;

WriteLine("CastAndClearTime = " +
REALTOSTR (CastAndClearTime)) ;

WriteLine(" ");

Dest := Bch;

IF LoadStatus
TELL SELF TO TransitTo(Dest, RoORO);
ELSE
ASK RORO TO SetSpotFree(ShipSpotiIndex);
TELL SELF TO TransitTo(Dest, RORO);
END IF;

ELSIF (Berth = Bch)

{After Offload and CastAndClear are complete, check fuel
status (only one check in cycle). If less than or equal

175

]

to the minimum allowable, the lighter must transit to
the refueling area. If LoadStatus = T, then lighter has
just carried the last load to the beach and it is

returning to the ShipQ.}

WriteLine(LighterNameTypeToStr (LighterTypeName) + "

LighterID = " +

LighterID + " CastAndClear Beach " +

BeachTypeToStr (ASK Beach BeachMake));
WriteLine("CastAndClearTime = " +

REALTOSTR (CastAndClearTime)) ;
WriteLine(" ");

IF LoadStatus
Dest := Ship;
TELL SELF TO TransitTo(Dest, Beach);
RETURN;

ELSE

IF (CurrentFuel <= MinFuel)
Dest := Fuel;
ASK Beach TO SetSpotFree (BeachSpotIndex) ;
TELL SELF TO TransitTo(Dest, Beach);

ELSE
Dest := Ship;
ASK Beach TO SetSpotFree (BeachSpotlIndex) ;

WritelLine("//Fuel Status// MinFuel = " +
REALTOSTR (MinFuel) +
" CurrentFuel = " 4+
REALTOSTR (CurrentFuel)) ;

TELL SELF TO TransitTo(Dest, Beach);
END 1IF;

176

END IF;

ELSE
{ Berth = RefuelArea }
Dest := ShipFromRefuel;

RefuelArea := Obj;

WritelLine(LighterNameTypeToStr{LighterTypeName) + "
LighterID = " + LighterID + " CastAndClear
RefuelArea " + ASK RefuelArea AreaName);

WriteLine("CastAndClearTime = " +
REALTOSTR (CastAndClearTime)) ;

WriteLine(" ®};

}
ASK RefuelArea TO SetSpotFree (RefuelSpotIndex) ;
TELL SELF TO TransitTo(Dest, RefuelArea);

END IF;

END METHOD;

TELL METHOD TransitTo(IN Dest : DestinationType;
IN Obj : ANYOBJ);

VAR

TransitTime : REAL;

RORO : ROROObjJ;
Beach : BeachObj;
RefuelArea . RefuelArealObj;

177

BEGIN
IF (Dest = Bch)
RORO := Obj;
TransitDistance :- ASK RoORo DistanceFromBLCP;

TransitTime := TransitDistance/(FullLoadSpeed *0.65)*60.0;

WriteLine(LighterNameTypeToStr (LighterTypeName) + "
LighterID = " +
LighterID + " TransitTo fired, now leaving " +
ASK RoORo ShipName + " for BLCP. ");
WriteLine("TransitTime = " + REALTOSTR(TransitTime));
WriteLine(" L

}

ELSIF (Dest = Ship)
Beach := Obj;
TransitDistance := ASK Beach DistanceToSLCP;

TransitTime := TransitDistance/(MaxSpeed * 0.65) * 60.0;

WriteLine(LighterNameTypeToStr (LighterTypeName) + "
LighterID = " +
LighterID + " TransitTo Fired, now leaving " +
BeachTypeToStr (ASK Beach BeachMake) + " For
SLCP.");

WriteLine("TransitTime = " + REALTOSTR(TransitTime));

WriteLine(" LB I

}

ELSIF (Dest = Fuel)

178

Beach := Obj;

Dest := RefuelFromBeach;
TransitDistance := ASK Beach DistFromBeachToRefuel;
TransitTime := TransitDistance/(MaxSpeed * 0.65) * 60.0;

WriteLine(LighterNameTypeToStr (LighterTypeName) + "
LighterlD = " +
LighterID + " TransitTo fired, now leaving
beach for RefuelArea ");
WriteLine("TransitTime = " + REALTOSTR(TransitTime));
WriteLine(" "),

ELSE
{ pest = ShipFromRefuel }
RefuelArea := Obj;
TransitDistance := ASK RefuelArea DistFromRefuelToShip;
TransitTime := TransitDistance/(MaxSpeed * 0.65) * 60.0;
WriteLine (LighterNameTypeToStr (LighterTypeName) + "
LighterID = " +
LighterID + " TransitTo fired, now leaving " +
ASK RefuelArea AreaName + " for SLCP ");

WriteLine("TransitTime = " + REALTOSTR(TransitTime)) ;
WriteLine(" "),

END 1IF;

WAIT DURATION TransitTime
END WAIT,;

179

ASK SELF TO BurnFuel (TransitTime) ;

IF (Dest = Bch)
ASK BLCP TO GetSpot (SELF) ;
ELSIF (Dest = Ship)
ASK SLCP TO GetSpot (SELF) ;
ELSIF (Dest = RefuelFromBeach)
ASK FuelCP TO GetFuelSpot (SELF) ;
ELSE
{ Dest = ShipFromRefuel }
ASK SLCP TO GetSpot (SELF) ;

END IF;

END METHOD,;

R R LR ECEPTEP }
TELL METHOD OffLoad(IN Obj ANYORJ) ;
e R EEEREEEPTERS)
VAR

OffLoadTime : REAL;

OperationalDelay4 : REAL;

Berth : DestinationType;

Beach : BeachObj;

BEGIN

IF LighterSpot = CWF
OffLoadTime := ASK RandTimel Normal (10.0, 3.43);
OperationalDelay4 := ASK RandTime2 UniformReal(0.0, 1.5);
OffLoadTime := OffLoadTime * FLOAT (MyLoadSize);

ELSE { LighterSpot = LCU }
OffLoadTime := ASK RandTimel Normal (3.0, 0.859);
OperationalDelay4 := ASK RandTime2 Normal (1.0, 0.333);
OffloadTime := OffLoadTime * FLOAT (MyLoadSize);

180

END IF;

WAIT DURATION OffLoadTime + OperationalDelay4
END WAIT;

Beach := Obj;

{

WriteLine(LighterNameTypeToStr (LighterTypeName) + "
LighterID = " +
LighterID + " Offload fired at " +
BeachTypeToStr (ASK Beach BeachMake)) ;

WriteLine("OffLoadTime = " + REALTOSTR(OffLoadTime +
OperationalDelay4)) ;

WriteLine(" ")

}

ASK SELF TO BurnFuel (OffLoadTime + OperationalDelay4) ;
Berth := Bch;

TELL SELF TO CastAndClear (Berth, Beach);

END METHOD;

VAR

RefuelTime : REAL;

Rate : REAL;

RefuelArea : RefuelAreaObj;

BEGIN

181

WriteLine (LighterNameTypeToStr (LighterTypeName) + "
LighterlD = " +

LighterID + " Refueling ");
}

RefuelArea := Obj;

Rate := ASK RefuelArea PumpRate;

RefuelTime := ((FuelCapacity - CurrentFuel) / Rate) * 60.0;
CurrentFuel := FuelCapacity;
{

WriteLine("RefuelTime = " + REALTOSTR(RefuelTime)) ;
WriteLine (" ")

}

WAIT DURATION RefuelTime
END WAIT;

TELL SELF TO CastAndClear (Fuel, Obj);

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE BLCP;

{ ...
Module Name: BLCP Last Modified: 18 Jun 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the Beach Lighterage Control Point
Object (BLCPObj). After a Lighter CastsandClears the beach

182

it asks the BeachObj to SetSpotFree. This method fires the
GetLighter method in BLCPObj. BLCPObj then pops the first
appropriate lighter off of theAwaitingBeachQueue and directs
the lighter to ApproachAndMoor to the Beach, where the
offload of vehicles can begin.

FROM GrpMod IMPORT QueueObj;
FROM Lighter IMPORT LighterObj;
FROM Beach IMPORT BeachObj;
TYPE

AwaitingBeachQueueObj = OBJECT (QueueObj [ANYOBJ: LighterObj])
END OBJECT;

BLCPObj = OBJECT
ASK METHOD ObjInit;
ASK METHOD GetSpot (IN Lighter : LighterObj);
ASK METHOD GetLighter (IN index : INTEGER;
IN Beach : BeachObj);
END OBJECT;

VAR

WaitForBeachQueue : AwaitingBeachQueueObj;
BLCP : BLCPObj;

END MODULE.

IMPLEMENTATION MODULE BLCP;

Module Name: BLCP Last Modified: 17 Jul 93
Author: J. S. Noel
Lt. USN

183

DESCRIPTION: Implements a Ship Lighter Control Point (SLCP)
object.

... }
FROM Global IMPORT SpotType,
ALL DestinationType;
FROM Lighter IMPORT LighterObj;
FROM Beach IMPORT BeachObj;
FROM SimMod IMPORT SimTime;
FROM Builder IMPORT BeachBuilder;
FROM WriteLine IMPORT WriteLine;
OBJECT BLCPODbj;
- o }
ASK METHOD ObjInit;
e e e R T TP R P TR TR PP)
BEGIN
NEW (WaitForBeachQueue) ;
END METHOD;
- ol)
ASK METHOD GetSpot (IN Lighter : LighterObj);
e T P EREE)
VAR
i : INTEGER;
SpotAvail : BOOLEAN;
LogIn : BOOLEAN;
ThisQ : BOOLEAN;
TheBeach : BeachObj;
Dest : DestinationType;
BEGIN
{
WriteLine("GetSpot Fired in BLCP ");
}

184

SpotAvail := FALSE;
Dest := Bch;

TheBeach := ASK BeachBuilder First();
WHILE TheBeach <> NILOBJ
ASK TheBeach TO CheckSpots(SpotAvail, 1i);

IF SpotAvail
TELL Lighter TO ApproachAndMoor (i, Dest, TheBeach) ;
EXIT;

END 1IF,;

TheBeach := ASK BeachBuilder Next (TheBeach);
END WHILE;

IF (NOT SpotAvail)

ASK WaitForBeachQueue TO Add(Lighter) ;

LogIn := TRUE; { adding to Q }

ThisQ := FALSE; { Q type = Beach }

ASK Lighter TO LogQueueTime(SimTime (), LogIn, TnisQ);
END 1IF;

END METHOD;

ASK METHOD GetLighter (IN index : INTEGER;
IN Beach : BeachObj);

VAR

Lighter : LighterObj;

LogIn : BOOLEAN;

ThisQ : BOOLEAN;

Dest : DestinationType;

BEGIN

185

WriteLine("GetLighter Fired in BLCP ");

}
Dest := Bch;

Lighter := ASK WaitForBeachQueue First();
IF Lighter <> NILOBJ

ASK WaitForBeachQueue TO RemoveThis(Lighter) ;

LogIn := FALSE; { not adding to Q }

ThisQ := FALSE; { Q type = beach }

ASK Lighter TO LogQueueTime(SimTime(), LogIn, ThisQ);

TELL Lighter TO ApproachAndMoor (index, Dest, Beach);
ASK Beach TO OccupyBeachSpot (index) ;

END IF;

END METHOD;
END OBJECT;

END MODULE.

DEFINITION MODULE Beach;

T T e
Module Name: Beach Last Modified: 20 Jul 93
Author: J. S. Noel

Lt. USN
DESCRIPTION: Defines a Beach object.

FROM ShpList IMPORT SpotArrayType;
FROM Global IMPORT SpotIdleTimeArrayType;

186

TYPE
BeachType = (BareBeach, FloatingCWPier, ELCAS);

BeachObj = OBJECT

BeachMake : BeachType;

BeachlID : STRING;

NumSpots : INTEGER;

BeachSpot : SpotArrayType;
DistanceToSLCP : REAL;
DistFromBeachToRefuel : REAL;
BeachSpotiIdleTime : SpotIdleTimeArrayType;

ASK METHOD ObjInit;
ASK METHOD GetBeachSetup(IN ID : STRING;
IN Name : BeachType;
IN Numl : INTEGER;
IN Array : SpotArrayType;
IN Num2 : REAL;
IN Num3 : REAL);

ASK METHOD SetSpotFree(IN index : INTEGER);
ASK METHOD CheckSpots (OUT SpotAvail : BOOLEAN;
OUT index : INTEGER);
ASK METHOD LogIdleBeachSpotTime(IN index : INTEGER;
IN InOutSpotTime : REAL;
IN Spotidle : BOOLEAN) ;
ASK METHOD OccupyBeachSpot (IN index : INTEGER);
ASK METHOD ResetBeachStats;

END OBJECT;

VAR
Beach : BeachObj;

END MODULE.

187

IMPLEMENTATION MODULE

L e T R
Module Name: Beach Last Modified: 18 Jun 93
Author: J. S. Noel
Lt. USN
DESCRIPTION: Implements a Beach object.
.. }
FROM ShpList IMPORT SpotArrayType;
FROM Global IMPORT ALL SpotType, SpotRecType,
ALL SpotlIdleTimeRecType;

FROM SimMod IMPORT SimTime;
FROM BLCP IMPORT BLCP;
FROM WriteLine IMPORT WriteLine;
FROM Convert IMPORT BeachTypeToStr;
TYPE
OBJECT BeachObj;
- }
ASK METHOD ObjInit;
et R R TR EEEEEERTEEE)
BEGIN
END METHOD;
R AR e EEEEEEE R RS }
ASK METHOD GetBeachSetup(IN ID : STRING;

IN Name : BeachType;

IN Numl : INTEGER;

IN Array : SpotArrayType;

IN Num2 : REAL;

IN Num3 : REAL);
- }

Beach;

188

VAR
i : INTEGER;
Rec : SpotlIdleTimeRecType;

BEGIN

BeachlD = ID;
BeachMake = Name;
{

WriteLine("//GetBeachSetup// BeachMake =
BeachTypeToStr (BeachMake)) ;

}

NumSpots := Numl;

NEW (BeachSpot, 1..NumSpots);
BeachSpot := Array;

DistanceToSLCP := Num2;
DistFromBeachToRefuel := Num3;

NEW (BeachSpotIdleTime, 1..NumSpots);

FOR i := 1 TO NumSpots

BeachSpot [i] .TotalIdleTime := 0.0;
NEW (Rec) ;
Rec.StartTime := 0.0;
Rec.EndTime := 0.0;
BeachSpotidleTime[i] := Rec;

END FOR;

END METHOD;

189

ASK METHOD LogIdleBeachSpotTime (IN index : INTEGER;
IN InOutSpotTime : REAL;
IN Spotldle : BOOLEAN) ;

BEGIN

{

WritelLine("LogIdleBrachSpotTime Fired ");

}

IF Spotlidle

BeachSpotIdleTime[index] .StartTime := InOutSpotTime;
ELSE

BeachSpotldleTime[index] .EndTime := InOutSpotTime;

BeachSpot [index] . TotallIdleTime :=
BeachSpot [index] . TotalIdleTime +

(BeachSpotIdleTime [index] .EndTime -
BeachSpotlIdleTime (index] .StartTime) ;
END IF,

END METHOD;

VAR
Idle : BOOLEAN;

BEGIN

{

WriteLine ("SetSpotFree fired in beach " +
BeachTypeToStr (BeachMake) + " Spot " +
INTTOSTR (index)) ;

190

}

BeachSpot [index] .SpotFree := TRUE;

Idle := BeachSpot {index] .SpotFree;

ASK SELF TO LoglIdleBeachSpotTime(index, SimTime(), Idle);
ASK BLCP TO GetLighter(index, SELF);

END METHOD;

ASK METHOD CheckSpots(OUT SpotAvail : BOOLEAN;
OUT index : INTEGER);

BEGIN S—_

{

WriteLine("CheckSpots fired in beach " +
BeachTypeToStr (BeachMake)) ;

}

SpotAvail

FALSE;

FOR index := 1 TO HIGH (BeachSpot)
IF (BeachSpot [index] .SpotFree)

SpotAvail := TRUE;
BeachSpot [index] . SpotFree := FALSE;
EXIT;
END IF;
END FOR;

END METHOD;

VAR
Idle : BOOLEAN;

191

BEGIN

{

WriteLine("Occupy spot fired in beach " +
BeachTypeToStr (BeachMake)) ;

}

BeachSpot [index] . SpotFree := FALSE;
Idle := BeachSpot [index] .SpotFree;

ASK SELF TO LoglIdleBeachSpotTime(index, SimTime(), Idle);

END METHOD;

-)
ASK METHOD ResetBeachStats;
e)
VAR

i : INTEGER;

BEGIN

{

WriteLine ("ResetBeachStats " + BeachTypeToStr (BeachMake)) ;

}

FOR i1 := 1 TO NumSpots
BeachSpot [i] .SpotFree := TRUE;

BeachSpot [i] .TotalldleTime := 0.0;
BeachSpotIdleTime([i] .StartTime := 0.0;
BeachSpotldleTime[i] .EndTime := 0.0;
END FOR;
END METHOD;

END OBJECT;

END MODULE.

192

DEFINITION MODULE FuelCP;

T L LT T
Module Name: FuelCP Last Modified: 20 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines the Fuel Control Point Object
(FuelCPObj) and the WaitingForFuelQueueObj. The
WaitingForFuelQueue is a FIFO group of lighters waiting for
an empty spot for refueling. When a spot opens up the
FuelCPObj pops the first lighter off of the queue and TELLs
it ApproachAndMoorRefuelArea.

... }
FROM GrpMod IMPORT QueueObj;

FROM Global IMPORT SpotType;

FROM Lighter IMPORT LighterObij;

FROM Refuel IMPORT RefuelArealObj;

TYPE

WaitingForFuelQueueObj = OBJECT (QueueObj [ANYOBJ:
LighteroObjl)
END OBJECT;

FuelCPObj = OBJECT
ASK METHOD ObjInit;
ASK METHOD GetFuelSpot (IN Lighter : LighterObj);
ASK METHOD GetGasLowLighter (IN index : INTEGER;
IN RefuelArea : RefuelAreaObj);
END OBJECT;
VAR

WaitForFuelQueue : WaitingForFuelQueueObj;
FuelCP : FuelCPObj;

193

END MODULE.

IMPLEMENTATION MODULE FuelCP;

{ ...
Module Name: FuelCP Last Modified: 20 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Implements the Fuel Control Point Object
(FuelCPObj) and the WaitingForFuelQueueObj.

... }
FROM Lighter IMPORT LighterObj;

FROM SimMod IMPORT SimTime;

FROM Refuel IMPORT RefuelAreaObj;

FROM Builder IMPORT FuelAreaBuilder;

FROM Global IMPORT ALL DestinationType;

FROM WriteLine IMPORT WriteLine;

TYPE

OBJECT FuelCPObj;
oo)
ASK METHOD ObjInit;

e mm e)
BEGIN

NEW (WaitForFuelQueue) ;

END METHOD;

R SRR EEE T)
ASK METHOD GetFuelSpot (IN Lighter LighterObj) ;
L ELEC L TR)
VAR

194

SpotAvail : BOOLEAN;

index : INTEGER;
RefuelArea : RefuelAreaObj;
Dest : DestinationType;
BEGIN

{

WriteLine ("GetFuelSpot Fired " + " LighterID = " + ASK
Lighter LighterlID);

}
SpotAvail := FALSE;
Dest := Fuel;

RefuelArea := ASK FuelAreaBuilder First();
WHILE RefuelArea <> NILOBJ
ASK RefuelArea TO CheckFuelSpots(SpotAvail, index);

IF SpotAvail
TELL Lighter TO ApproachAndMoor (index, Dest,
RefuelArea) ;
ASK RefuelArea TO OccupySpot (index) ;
RETURN;
END IF,

RefuelArea := ASK FuelAreaBuilder Next (RefuelArea);
END WHILE;

IF (NOT SpotAvail)
ASK WaitForFuelQueue TO Add(Lighter);

END IF;

END METHOD;

ASK METHOD GetGasLowLighter (IN index : INTEGER;
IN RefuelArea : RefuelAreaObj);

195

VAR
Lighter : LighterObj;

Dest : DestinationType;

BEGIN

{

WritelLine("GetGasLowLighter Fired ");
}

Dest := Fuel;

Lighter := ASK WaitForFuelQueue First();
IF Lighter <> NILOBJ
ASK WaitForFuelQueue TO RemoveThis(Lighter);
TELL Lighter TO ApproachAndMoor (index, Dest, RefuelArea);
END IF,;
END METHOD;
END OBJECT;

END MODULE.

DEFINITION MODULE Refuel;

{ ...
Module Name: RefuelArea Last Modified: 20 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines The RefuelArea object.

196

FROM Global IMPORT RefuelSpotRecType;
FROM Lighter IMPORT LighterObj;

TYPE
RefuelSpotArrayType = ARRAY INTEGER OF RefuelSpotRecType;

RefuelAreaObj = OBJECT

AreaName : STRING;
NumRefuelSpots : INTEGER;
DistFromRefuelToShip : REAL;

RefuelSpot : RefuelSpotArrayType;
PumpRate : REAL;

ASK METHOD ObjInit;

ASK ! ”THOD GetRefuelAreaSetup(IN Name : STRING;
IN Numl : INTEGER;
IN Num2 : REAL;
IN Array

RefuelSpotArrayType;
IN Num3 : REAL);
ASK METHOD SetSpotFree(IN index : INTEGER);
ASK METHOD CheckFuelSpots (OUT SpotAvail : BOOLEAN;
OUT index : INTEGER) ;
ASK METHOD OccupyRefuelSpot (IN index : INTEGER);
END OBJECT;

VAR
RefuelArea : RefuelAreaObj;

END MODULE.

IMPLEMENTATION MODULE Refuel;

197

Module Name: RefuelArea Last Modified: 20 Jul 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: Implements The RefuelArea object.

... }
FROM FuelCP IMPORT FuelCP;
FROM Lighter IMPORT LighterObj;
FROM WriteLine IMPORT WriteLine;
OBJECT RefuelAreaObj;
-)
ASK METHOD ObjInit;
e e e TP EERPEEERTE)
BEGIN
END METHOD;
e RRREEETEEEEEEE }
ASK METHOD GetRefuelAreaSetup(IN Name : STRING;

IN Numl : INTEGER;

IN Num2 : REAL;

IN Array :
RefuelSpotArrayType;

IN Num3 REAL) ;
e o }
BEGIN

198

AreaName :=Name;

{
WriteLine("//GetRefuelAreaSetup// AreaName = " 4+ AreaName);

}

NumRefuelSpots :=Numil;
DistFromRefuelToShip :=Num2;

NEW (RefuelSpot, 1..NumRefuelSpots);
RefuelSpot :=Array;

PumpRate :=Num3;

END METHOD;

WriteLine("SetSpotFree Fired in RefuelArea ");

}

RefuelSpot [index] .RefuelSpotFree := TRUE;
ASK FuelCP TO GetGasLowLighter(index, SELF);

END METHOD;

199

ASK METHOD CheckFuelSpots (OUT SpotAvail : BOOLEAN;
OUT index : INTEGER);

BEGIN

{

WriteLine ("CheckFuelSpots fired in RefuelArea ");

}
SpotAvail := FALSE;
FOR index := 1 TO HIGH(RefuelSpot)
IF (RefuelSpot [index] .RefuelSpotFree)
SpotAvail := TRUE;
RETURN;
END IF;
END FOR;

END METHOD;

Writeline("OccupySpot Fired in RefuelArea spot = " +
INTTOSTR (index)) ;

}

RefuelSpot [index] .RefuelSpotFree := FALSE;

END METHOD;

END OBJECT;

END MODULE.

200

DEFINITION MODULE Convert;

{ ...
Module Name: Convert Last Modified: 20 Jul 93
Author: J. S. Noel

Lt. USN

DESCRIPTION: Defines Procedures for converting enumerated
types to/from STRING for input/output.

FROM Global IMPORT SpotType;

FROM Beach IMPORT BeachType;

FROM Lighter IMPORT LighterNameType;
FROM Ship IMPORT ShipTypeType;

PROCEDURE SpotTypeToStr (IN Spot : SpotType) : STRING;
PROCEDURE StrToSpotType(IN Str : STRING) : SpotType;

PROCEDURE BeachTypeToStr (IN BchName : BeachType) : STRING;
PROCEDURE StrToBeachType (IN Str : STRING) : BeachType;

PROCEDURE LighterNameTypeToStr (IN LighterName
LighterNameType) : STRING;

PROCEDURE StrTolLighterNameType(IN Str : STRING)
LighterNameType;

PROCEDURE ShipTypeToStr(IN ShipType : ShipTypeType)

STRING;

PROCEDURE StrToShipType(IN Str : STRING) : ShipTypeType;

PROCEDURE BooleanToStr (IN Boolean : BOOLEAN) : STRING;

PROCEDURE StrToBoolean(IN Str : STRING) : BOOLEAN;

END MODULE.

IMPLEMENTATION MODULE Convert;

201

Module Name: Convert Last Modified: 20 Jul 93
Author: J. S. Noel
Lt. USN

DESCRIPTION: Implements Procedures for converting
enumerated types to/from STRING for input/output.

... }
FROM Global IMPORT ALL SpotType;

FROM Beach IMPORT ALL BeachType;

FROM Lighter IMPORT ALL LighterNameType;

FROM Ship IMPORT ALL ShipTypeType;

FROM WriteLine IMPORT WriteLine;

R e e e L L EE P }
PROCEDURE SpotTypeToStr(IN Spot : SpotType) STRING;

(o }
VAR

Str : STRING;
BEGIN
CASE Spot

WHEN LCU : Str "LCU";
WHEN CWF : Str := "CWF";

WHEN LoLo : Str := "LoLo";
OTHERWISE
Str := "Other...?";
END CASE;
RETURN(Str) ;

END PROCEDURE;

202

VAR
Spot : SpotType;

BEGIN
WriteLine("Converting" + Str);

CASE Str
WHEN "LCU" : Spot := LCU;
WHEN "Lcu" : Spot := LCU;
WHEN "1CU" : Spot := LCU;
WHEN "CWF" : Spot := CWF;
WHEN "Cwf" : Spot := CWF;
WHEN "cwf" : Spot := CWF;

WHEN "LoLo" : Spot := LoLoO;
WHEN "Lolo" : Spot := LoOLO;
WHEN "lolo" : Spot := LoLo;
WHEN "LOLO" : Spot := LoLo;

END CASE;
RETURN (Spot) ;

END PROCEDURE;

VAR
Str : STRING;

BEGIN

CASE BchName

203

WHEN BareBeach : Str := "BareBeach";
WHEN FloatingCWPier : Str := "FloatingCWPier";
WHEN ELCAS : Str := "ELCAS";
OTHERWISE
Str := "Other...?";
END CASE;

RETURN(Str) ;

END PROCEDURE;

R R LR e s)
PROCEDURE StrToBeachType(IN Str STRING) BeachType;

oo)
VAR

BeachName : BeachType;

BEGIN

WriteLine("Converting" + Str);

CASE Str
WHEN "BareBeach" : BeachName := BareBeach;
WHEN "FloatingCwPier" : BeachName := FloatingCWwPier;
WHEN "ELCAS" : BeachName := ELCAS;

END CASE;

RETURN (BeachName) ;

END PROCEDURE;

PROCEDURE LighterNameTypeToStr (IN LighterName
LighterNameType) : STRING;

204

Str STRING;
BEGIN

CASE LighterName

WHEN LCU1466 Str := "LCUl466";
WHEN LCUl610 Str := "LCU1610";
WHEN LCU2000 Str := "LCU2000";
WHEN CWF1l1 Str := "CWFl11t;
WHEN CWF21 Str := "CWF21";
WHEN CWF31 Str := "CWF31v;
WHEN LSV Str := "LSV";
OTHERWISE
Str := "Other...?";
END CASE,;

RETURN (Str) ;

END PROCEDURE;

s m e e e ieeemeeeaaas
PROCEDURE StrToLighterNameType (IN Str STRING)
LighterNameType;
L LT
VAR
LighterName LighterNameType;
BEGIN
WriteLine("Converting" + Str);
CASE Str

WHEN "LCUl466" LighterName := LCU1466;

WHEN "LCU1610" LighterName := LCU1610;

WHEN "LCU2000" LighterName := LCU2000;

WHEN "CWF11" LighterName := CWF11;

WHEN "CWF21" LighterName := CWF21;

WHEN "CWF31" LighterName := CWF31;

WHEN "LSV" LighterName := LSV;

205

END CASE;
RETURN (LighterName) ;

END PROCEDURE;

PROCEDURE ShipTypeToStr (IN ShipType
STRING;

VAR

Str : STRING;

BEGIN

CASE ShipType
WHEN SSR : Str := "SSR";
WHEN NSSR : Str := "NSSR";
OTHERWISE

Str := "Other...?";
END CASE;
RETURN(Str) ;

END PROCEDURE;

VAR
ShipType : ShipTypeType;

BEGIN

206

ShipTypeType)

......................

- . e e e m - .- .mm .- — - -

WriteLine("Converting" + Str);
CASE Str
WHEN "SSR" : ShipType := SSR;
WHEN "NSSR" : ShipType := NSSR;
END CASE;

RETURN (ShipType) ;

END PROCEDURE;

VAR
Str : STRING;

BEGIN

CASE Boolean
WHEN TRUE : Str := "TRUE";
WHEN FALSE : Str := "FALSE";
OTHERWISE

Str := "Other...?";
END CASE;
RETURN(Str) ;

END PROCEDURE;

207

VAR
Boolean : BOOLEAN;

BEGIN
WriteLine("Converting" + Str);
CASE Str
WHEN "TRUE" : Boolean := TRUE;
WHEN "FALSE" : Boolean := FALSE;
END CASE;

RETURN (Boolean) ;

END PROCEDURE;

END MODULE.

DEFINITION MODULE Stats;

{ ___
Module Name: Stats Last Modified: 21 Jul 93
Author: J. S. Noel

Lt. USN
DESCRIPTION: Defines the Statistics Object.
FROM Ship IMPORT ROROODbJ;

TYPE

208

RECORD

SpotidleTimeRecType

Place
Time

STRING;
REAL;

END RECORD;

ARRAY INTEGER OF
SpotIldleRecType;

GrandMeanBeachSpotIdleTimeArrayType

StatsObj OBJECT;
INTEGER;
INTEGER;
REAL;
REAL;
REAL;
REAL;

Reps
NumBeaches
MeanTPut
MeanLCUinBQ
MeanLSVinBQ
MeanCWFinBQ

GrandMeanLCUinBQ
GrandMeanLSVvinBQ
GrandMeanCwWwFinBQ
GrandMeanLCUinSQ
GrandMeanLSvinSQ
GrandMeanCWFinSQ

REAL;
REAL;
REAL;
REAL;
REAL;
REAL;

MeanLCUinSQ
MeanLSVvinsQ
MeanCWFinSQ

REAL;
REAL;
REAL;

MeanShipLCUSpotIdle
MeanShipCWFSpotIdle
MeanShipLoLoSpotIdle

REAL;
REAL;
REAL;

GrandMeanShipLCUSpotIdle
GrandMeanShipCWFSpotlIdle
GrandMeanShipLoLoSpotlIdle

REAL;
REAL;
REAL;

MeanBeachSpotidle REAL;
GrandMeanBeachSpotIdleTime
GrandMeanBeachSpotIdleTimeArrayType;

209

ASK METHOD ObjInit;
ASK METHOD DumpStats(IN OffloadTime : REAL);

END OBJECT;

VAR

Stats : StatsObj;

END MODULE.

IMPLEMENTATION MODULE Stats;

Module Name: Stats

Author: J. S. Noel
Lt. USN
DESCRIPTION:

FROM Lighter
FROM SLCP
FROM Ship
FROM Beach
FROM Builder

FROM RepMngr
FROM Global
FROM Convert

Last Modified: 21 Jul 93

Implements the Statistics Object.

IMPORT

FROM WriteLine IMPORT

LighterObj, ALL LighterNameType;

WaitForShipQueue;
ROROODbJ ;
BeachObj, ALL BeachType;

BeachBuilder, LighterBuilder,
ShipBuilder;

RepManager;

ALL SpotType;

BeachTypeToStr;

WriteLine, WriteLineA, WriteLineB,
WriteLineC, WriteLineD;

210

TYPE

OBJECT StatsObj;

k : INTEGER;
Beach : BeachObj;
Rec : SpotlIdleRecType;

BEGIN

Reps := 0;
MeanTPut := 0.0;

GrandMeanLCUinBQ :=
GrandMeanLSVinBQ :=
GrandMeanCWFinBQ :=
GrandMeanLCUinSQ :=
GrandMeanLSvinSQ :=
GrandMeanCWFinSQ :=

-

¢ W

-

. we

O OO0 OO o
QOO 0O 0o
-

’

GrandMeanShipLCUSpotlidle
GrandMeanShipCWFSpotlIdle :
GrandMeanShipLoLoSpotIdle := 0.0;

|
o O
o O

NumBeaches := ASK BeachBuilder numberiIn;
NEW (GrandMeanBeachSpotIdleTime, 1.. NumBeaches);

k :=0;

Beach := ASK BeachBuilder First();
WHILE Beach <> NILOBJ

211

NEW (Rec) ;

Rec.Place := ASK Beach BeachlD;
Rec.Time := 0.0;
GrandMeanBeachSpotIdleTime[k] := Rec;

Beach := ASK BeachBuilder Next (Beach) ;
END WHILE;

END METHOD;

Lk b T Fepupuupupup U
ASK METHOD DumpStats(IN OffloadTime : REAL);
L T L L L L T T
VAR

Lighter : LighteroObj;

JunkLighter : LighterObj;

Ship : ROROODbj;

Beach : BeachObj;

i : INTEGER;

LighterType : LighterNameType;
NameOfShip : STRING;
TypeOfBeach : BeachType;

IDOfBeach : STRING;

CountLCU : INTEGER;
CountLSV : INTEGER;
CountCwWF : INTEGER;
CountLoLo : INTEGER;

TimeLCUinBQ : REAL;
TimeLSVinBQ : REAL;
TimeCWFinBQ : REAL;

TimeLCUinSQ : REAL;

TimeLSVinSQ : REAL;
TimeCWFinSQ : REAL;

212

ShipLCUSpotldle : REAL;
ShipCWFSpotIdle : REAL;
ShipLoLoSpotidle : REAL;

BeachSpotldle : REAL;

BEGIN

WriteLine("Entering Stats mod, DumpStats method.
OffloadTime = " +
REALTOSTR (OffloadTime)) ;

CountLCU :=0;
CountLSV :=0;
CountCWF :=0;
CountLoLo :=0;
TimeLCUinBQ := 0.0;

TimeLSVinBQ := 0.0;
TimeCWFinBQ := 0.0;

TimeLCUinSQ := 0.0;
TimelSVinsSQ :=
TimeCWFinSQ := 0.0;

o
o

MeanLCUinBQ := 0.0;
MeanLSVvVinBQ :=
MeanCWFinBQ := 0.0;

o
o

MeanLCUinSQ :=
MeanLSvinSQ :=
MeanCWFinsSQ := 0.0;

o o
o O

ShipLCUSpotidla := 0.
ShipCWFSpotliie 0.0;
ShipLoLoSpotlIdle := 0.0;

MeanShipLCUSpotlIdle := 0
MeanShipCWFSpotlIdle := 0.

213

MeanShipLoLoSpotIdle := 0.0;

BeachSpotIdle := 0.0;

MeanBeachSpotldle 0.0;

Reps := Reps + 1;
MeanTPut := MeanTPut + OffloadTime;

Lighter := ASK LighterBuilder First();
WHILE Lighter <> NILOBJ

LighterType := ASK Lighter LighterTypeName;

IF (LighterType = LCU1466) OR (LighterType =
LCU1610) OR (LighterType = LCU2000)

TimeLCUinSQ := TimeLCUinSQ + ASK Lighter
TimeInShipQueue;
TimeLCUinBQ := TimeLCUinBQ + ASK Lighter
TimelInBeachQueue;
CountLCU = CountLCU + 1;

ELSIF (ASK Lighter LighterTypeName = LSV)
TimeLSVinSQ := TimeLSVinSQ + ASK Lighter

TimeInShipQueue;
TimeLSVinBQ := TimeLSVinBQ + ASK Lighter
TimeInBeachQueue;
CountLSV = CountLSV + 1;
ELSE
TimeCWFinSQ := TimeCWFinSQ + ASK Lighter
TimeInShipQueue;
TimeCWFinBQ := TimeCWFinBQ + ASK Lighter
TimeInBeachQueue;
CountCWF = CountCWF + 1;
END IF;

Lighter := ASK LighterBuilder Next (Lighter);

214

END WHILE;

MeanLCUinBQ := TimeLCUinBQ / FLOAT (CountLCU) ;
MeanLSVinBQ := TimeLSVinBQ / FLOAT(CountLSV) ;
MeanCWFinBQ := TimeCWFinBQ / FLOAT (CountCWF) ;
MeanLCUinSQ := TimeLCUinSQ / FLOAT (CountLCU) ;
MeanLSVvinSQ := TimeLSVinsSQ / FLOAT(CountLSV) ;
MeanCWFinSQ := TimeCWFinSQ / FLOAT(CountCWF) ;
GrandMeanLCUinBQ := GrandMeanLCUinBQ + MeanLCUinBQ;
GrandMeanLSVinBQ := GrandMeanLSVinBQ + MeanLSVinBQ;
GrandMeanCWFinBQ := GrandMeanCWFinBQ + MeanCWFinBQ;
GrandMeanLCUinSQ := GrandMeanLCUinSQ + MeanLCUinSQ;
GrandMeanLSVvinSQ := GrandMeanLSVinSQ + MeanLSvinSQ;
GrandMeanCWFinSQ := GrandMeanCWFinSQ + MeanCWFinSQ;
CountLCU :=0;

CountCWF :=0;

CountLoLo =0;

{ Determine ship spot stats }
IF (Reps = 1)

WriteLineC("

WriteLineC("

WriteLineC("

WriteLineC("

WriteLineC(" ");

WriteLineC ("Rep# Ship Name
Mean LoLo");

END IF;

Ship := ASK ShipBuilder First();
WHILE Ship <> NILOBJ

215

Mean LCU

Mean CWF

NameOfShip := ASK Ship ShipName;

FOR 1 := 1 TO (ASK Ship NumSpots)
IF (ASK Ship ShipSpot[i].SpotClassification = LCU)
ShipLCuSpotidle := ASK Ship
shipSpot [i] .TotalldleTime;
CountLCU := CountLSV + 1;

ELSIF(ASK Ship ShipSpot[i] .SpotClassification = CWF)
ShipCWFSpotIdle := ASK Ship
ShipSpot [i] . TotalldleTime;
CountCwWF := CountCwWF + 1;

ELSE
ShipLoLoSpotIdle := ASK Ship
ShipSpot [i] .TotalldleTime;
CountLoLo := CountlLolLo + 1;

END IF;
END FOR;

MeanShipLCUSpotldle := ShipLCUSpotldle /FLOAT(CountLCU) ;

MeanShipCWFSpotidle := ShipCWFSpotldle / FLOAT(CountCWF) ;

MeanShipLoLoSpotIdle := ShipLoLoSpotIdle / FLOAT(CountLoLo) ;

GrandMeanShipLCUSpotIdle := GrandMeanShipLCUSpotIdle

+ MeanShipLCUSpotIdle;

GrandMeanShipCWFSpotIdle

+ MeanShipCWFSpotlidle;

GrandMeansShipLoLoSpotlIdle := GrandMeanShipLoLoSpotIdle
+ MeanShipLoLoSpotlIdle;

GrandMeanShipCWwFSpotlIdle :

WriteLineC(INTTOSTR(Reps) + " " + NameOfShip +
" " + REALTOSTR (MeanShipLCUSpotIdle) +
" " + REALTOSTR (MeanShipCWFSpotldle) +
" " + REALTOSTR (MeanShipLoLoSpotIdle)) ;

216

Ship := ASK ShipBuilder Next (Ship);

END WHILE;

{ Determine Beach spot stats }
IF (Reps = 1)

WriteLineD(" ");

WriteLineD(" ");

WriteLineD("---------- Idle Beach Spot TimeStats---------- "),

WriteLineD(" ");

WriteLineD(" ");

WriteLineD ("Rep# Beach Make Beach 1D Mean
Idle Time");

END 1IF,;
k := 0;
Beach := ASK BeachBuilder First()};
WHILE Beach <> NILOBJ
k :=k + 1;
TypeOfBeach := ASK Beach BeachMake;
IDOfBeach := ASK Beach BeachlD;
FOR i := 1 TO (ASK Beach NumSpots)

BeachSpotlIdle := BeachSpotlIdle + ASK Beach
BeachSpot [i] .TotalIdleTime;

END FOR;

MeanBeachSpotldle := BeachSpotldle / FLOAT(ASK Beach
NumSpots) ;

WriteLineD (INTTOSTR(Reps) + " "+
BeachTypeToStr (TypeOfBeach) + " "o+

217

IDOfBeach + " L
REALTOSTR (MeanBeachSpotIdle));

GrandMeanBeachSpotIdleTime (k] .Time :=

GrandMeanBeachSpotIdleTime [k] .Time + MeanBeachSpotldle;

BeachSpotldle := 0.0;
Beach := ASK BeachBuilder Next (Beach);

END WHILE;

IF (Reps = 1)

WriteLineA("™ ");
WriteLineA(" ");

WriteLineA("-------------- Throughput Stats---------

WriteLineA("™ ");

WriteLineA(" *);

WriteLineA ("Rep# Total Time");

END IF;

WriteLineA (INTTOSTR(Reps) + " "o+
REALTOSTR (OffloadTime)) ;

IF (Reps = 1)

WriteLineB(" ");
WriteLineB(" ");

WriteLineB("------------- Time in Queue Stats-------

WriteLineB(" ");
WriteLineB(" ");

WriteLineB("Rep# Mean LCU Mean LSV
CWF Mean LCU Mean LSV Mean CWF");
WriteLineB(" Ship Ship

Beach Beach Beach") ;
END IF;

218

Mean

Ship

WriteLineB (INTTOSTR(Reps) + " L
REALTOSTR (MeanLCUinSQ) +

" " + REALTOSTR (MeanLSVinSQ) + " "o+
REALTOSTR (MeanCWFinSQ) +
" " + REALTOSTR (MeanLCUinBQ) + " "o+

REALTOSTR (MeanLSVinBQ) +
" " + REALTOSTR (MeanCWFinBQ)) ;

IF (ASK RepManager OutputToScreen)

OUTPUT;
OUTPUT;
OUTPUT("---------==---- Throughput Stats------------------ "),
OUTPUT;
OUTPUT,;
END IF;

OUTPUT;

OUTPUT ("Rep# Total Time");

OUTPUT (INTTOSTR (Reps) + " " 4+ REALTOSTR(OffloadTime));
OUTPUT;

OUTPUT;

{ If more than one ship, must cycle through list to
determine if LastLoad = T for each. If true, and RepMngr
is Done, then simulation is truely finished and Stats can
be dumped. If any ships still have vehicles, then only the
current ship can be reset and must ask SLCP to GetLighter.
GetLighter must be modified to cycle through all ships
in list when CheckSpots is fired. }

IF (ASK RepManager Done)
WriteLineA(" ");

WriteLineA(" Total number of reps completed = " +
INTTOSTR (Reps)) ;

219

WriteLineB(" ");

WriteLineB(" Total number of reps completed
INTTOSTR (Reps)) ;

WriteLineC(" ");

WriteLineC(" Total number of reps completed
INTTOSTR (Reps)) ;

WriteLineD("® ");

WriteLineD("™ Total number of reps completed
INTTOSTR (Reps)) ;

WriteLineD(" ");

"
]
+

"
=
+

1]
3
+

MeanTPut := MeanTPut / FLOAT(Reps) ;

GrandMeanLCUinBQ := GrandMeanLCUinBQ / FLOAT(Reps) ;
GrandMeanLSVinBQ := GrandMeanLSVinBQ / FLOAT(Reps) ;
GrandMeanCWFinBQ := GrandMeanCWFinBQ / FLOAT(Reps) ;
GrandMeanLCUinSQ := GrandMeanLCUinSQ / FLOAT(Reps);
GrandMeanLSVinSQ := GrandMeanLSVvinSQ / FLOAT (Reps) ;
GrandMeanCWFinSQ := GrandMeanCWFinSQ / FLOAT(Reps) ;

GrandMeanShipLCUSpotIdle GrandMeanShipLCUSpotiIdle

/ FLOAT (Reps) ;
GrandMeanShipCWFSpotlIdle

/ FLOAT (Reps) ;
GrandMeanShipLoLoSpotIdle := GrandMeanShipLoLoSpotlIdle

/ FLOAT (Reps) ;

1}

GrandMeanShipCWFSpotIdle

FOR i := 1 TO NumBeaches
GrandMeanBeachSpotIdleTime[i] .Time :=
GrandMeanBeachSpotIdleTime[i] .Time / FLOAT(Reps);

WriteLineD("Grand Mean For Beach Spot Idle Time = "
+ REALTOSTR (GrandMeanBeachSpotIdleTime[i] .Time)
+ " For Beach ID = "
+ GrandMeanBeachSpotIdleTime[i].Place);
END FOR;

WriteLineA ("Mean Throughput Time = " + REALTOSTR(MeanTPut));

220

WriteLineB("Grand Mean For LCU in Beach Queue
+ REALTOSTR (GrandMeanLCUinBQ)) ;

WriteLineB("Grand Mean For LSV in Beach Queue .
+ REALTOSTR (GrandMeanLSvinBQ)) ;

WriteLineB("Grand Mean For CWF in Beach Queue "
+ REALTOSTR (GrandMeanCWFinBQ)) ;

WriteLineB("Grand Mean For LCU in Ship Queue
+ REALTOSTR (GrandMeanLCUinSQ)) ;

WriteLineB("Grand Mean For LSV in Ship Queue
+ REALTOSTR (GrandMeanLsSvinsQ)):

WriteLineB("Grand Mean For CWF in Ship Queue
+ REALTOSTR (GrandMeanCWFinSQ)) ;

"

WriteLineC("Grand Mean For LCU Ship Spot Idle Time
+ REALTOSTR (GrandMeanShipLCUSpotldle)) ;

WriteLineC("Grand Mean For CWF Ship Spot Idle Time
+ REALTOSTR (GrandMeanShipCWFSpotldle)) ;

WriteLineC("Grand Mean For LoLo Ship Spot Idle Time = "
+ REALTOSTR(GrandMeanShipLoLoSpotIdle)) ;

OUTPUT ("Mean Throughput Time = " + REALTOSTR (MeanTPut));
OUTPUT;
OUTPUT;
ELSE
OffloadTime := 0.0;
{Reset all lighters}
Lighter := ASK LighterBuilder First();
WHILE Lighter <> NILOBJ

ASK Lighter TO ResetLighterStats;

Lighter := ASK LighterBuilder Next (Lighter);
END WHILE;

{Reset the RoRo}

221

Ship := ASK ShipBuilder First();
WHILE Ship <> NILOBJ

ASK Ship TO ResetShipStats;

Ship := ASK ShipBuilder Next (Ship);
END WHILE;

ASK SLCP TO ResetSLCP;
{Reset all beaches}
Beach := ASK BeachBuilder First():;
WHILE Beach <> NILOBJ
ASK Beach TO ResetBeachStats;

Beach := ASK BeachBuilder Next (Beach);
END WHILE;

END IF;

END METHOD;

END OBJECT;

END MODULE.

DEFINITION MODULE WriteLine;

Module Name: Writeline Last Modified: 20 Jul 93
Author: M. Bailey Modified by: J. S. Noel
Prof. NPGS

DESCRIPTION: Defines the WriteLine procedure for output to

the file "Sim.Out".

PROCEDURE WriteLine(IN String : STRING);
PROCEDURE WriteLineA(IN String : STRING);
PROCEDURE WriteLineB(IN String : STRING);

222

PROCEDURE WriteLineC(IN String : STRING);
PROCEDURE WriteLineD(IN String : STRING);

END MODULE.

IMPLEMENTATION MODULE WriteLine;

o e m e m et ettt
Module Name: WriteLine Last Modified: 20 Jul 93
Author: M. Bailey Modified by: J. S. Noel

Prof. NPGS

DESCRIPTION: Implements the WriteLine procedure for output
to the file "Sim.Out".

... }
FROM IOMod IMPORT FileUseType (Output);

FROM IOMod IMPORT StreamObj;

FROM UtilMod IMPORT DateTime;

VAR

DT : STRING;

TraceStream : StreamObj;

TraceStreamA : StreamObj;

TraceStreamB : StreamObj;

TraceStreamC : StreamObj;

TraceStreamD : StreamObj;
e }
PROCEDURE WriteLine(IN String : STRING);
oo)
BEGIN

IF (TraceStream = NILOBJ)
NEW (TraceStream) ;
ASK TraceStream TO Open("sim.out", Output);
DateTime (DT) ;

223

ASK TraceStream TO WriteString(DT);
ASK TraceStream TO WriteLn;
ASK TraceStream TO Writeln;

END 1F;

ASK TraceStream TO WriteString(String);
ASK TraceStream TO WriteLn;

END PROCEDURE;

- i)
PROCEDURE WriteLineA(IN String : STRING);
S T PR P L PP)
BEGIN

IF (TraceStreamA = NILOBJ)
NEW (TraceStreamA) ;
ASK TraceStreamA TO Open("Total.out", Output);
DateTime (DT) ;
ASK TraceStreamA TO WriteString(DT);
ASK TraceStreamA TO Writeln;
ASK TraceStreamA TO Writeln;
END IF;

ASK TraceStreamA TC WriteString(String);
ASK TraceStreamA TO Writeln;

END PROCEDURE;

e A CEGEREEE L L R EETE }
PROCEDURE WriteLineB(IN String : STRING);
T S LEEEE I)
BEGIN
IF (TraceStreamB = NILOBJ)
NEW (TraceStreamB) ;
ASK TraceStreamB TO Open("Queue.out", Output);
DateTime (DT) ;

224

ASK TraceStreamB TO WriteString(DT);
ASK TraceStreamB TO WritelLn;
ASK TraceStreamB TO Writeln;

END IF;

ASK TraceStreamB TO WriteString(String);
ASK TraceStreamB TO WriteLn;

END PROCEDURE;

(e m o }
BEGIN
IF (TraceStreamC = NILOBJ)

NEW (TraceStreamC) ;

ASK TraceStreamC TO Open("SSpot.out", Output);
DateTime (DT) ;
ASK TraceStreamC TO WriteString(DT);
ASK TraceStreamC TO Writeln;
ASK TraceStreamC TO WritelLn;
END 1IF;

ASK TraceStreamC TO WriteString(String);
ASK TraceStreamC TO Writeln;

END PROCEDURE;

e R e D R EEEEERES }
PROCEDURE WriteLineD(IN String STRING) ;
e }
BEGIN
IF (TraceStreamD = NILOBJ)

NEW (TraceStreamD) ;

ASK TraceStreamD TO Open("BSpot.out", Output);
DateTime (DT) ;

225

ASK TraceStreamD TO WriteString(DT);
ASK TraceStreamD TO WritelLn;
ASK TraceStreamD TO Writeln;

END 1F;

ASK TraceStreamD TO WriteString(String);
ASK TraceStreamD TO WriteLn;
END PROCEDURE;

END MODULE.

226

APPENDIX D SAMPLE INPUT FILRS

4 # Number of Beaches in this file/simulation scenario

SouthBeach -> dummy \\ # Name of Beach. Must be of STRING.

Admin -> dummy \\ # Name of Beach. Must be of STRING.
Army -> dummy \\ # Name of Beach. Must be of STRING.
Navy -> dummy \\ # Name of Beach. Must be of STRING.

This file contains the names of the four beaches in the
validation scenario. The format is as follows:

NumBeaches ... The number of beach names to be read.

BeachName -> ... Name of beach.

The format is the same for all input files. The first
line in the file contains the number of records to be read.
The first line of each record contains the record
identifier, such as the beach name, followed by the symbol
" ", The lines that follow contain the rest of the
record. The end of a record is indicated by a double slash
" \\ ". Comments are preceded by a " # " symbol.

->

-------------------------- BchType.dat-----------------------
4 # Number of Beach records in this file.
SouthBeach -> # Beach ID. Must be STRING.

BareBeach # Type of Beach. Must be of BeachType.

2 # Number of Spots. Must be INTEGER.

227

LCU

LCU

3

0
.0
\

~ O O

Admin ->
FloatingCwPier
1

LCU
T

.0
0
\

~ O OO

Army ->
FloatingCwPier
2

LCU
T

LCU

.0
0
\

~ O

Navy ->
FloatingCwPier
1

LCU

* = * ®

®

* 3 1

* &®

* * T

I* %

T ¥

* %

Spot Type. Must be SpotType.
Spot Free. Must be BOOLEAN.
Spot Type. Must be SpotType.
Spot Free. Must be BOOLEAN.

Distance from SLCP. Must be REAL.
Distance from RefuelArea. Must be REAL.

Must be STRING.
Must be of BeachType.
Must be INTEGER.

Beach ID.
Type of Beach.
Number of Spots.

Must be SpotType.
Must be BOOLEAN.

Spot Type.
Spot Free.

Must be REAL.
Must be REAL.

Distance from SLCP.
Distance from RefuelArea.

Must be STRING.
Must be of BeachType.
Must be INTEGER.

Beach ID.
Type of Beach.
Number of Spots.

Spot Type. Must be SpotType.
Spot Free. Must be BOOLEAN.
Spot Type. Must be SpotType.
Spot Free. Must be BOOLEAN.

Distance from SLCP. Must be REAL.
Distance from RefuelArea. Must be REAL.

Must be STRING.
Must be of BeachType.
Must be INTEGER.

Beach ID.
Type of Beach.
Number of Spots.

Must be SpotType.
Must be BOOLEAN.

Spot Type.
Spot Free.

228

6.0 # Distance from SLCP. Must be REAL.

6.0 # Distance from RefuelArea. Must be REAL.
\\

--------------------------- LtName.dat-------------~--------~
12 # Number of Lighters in this file/simulation scenario
ALFA -> dummy \\# ID of Lighter. Must be a unique STRING.
BRAVO -> dummy \\# ID of Lighter. Must be a unique STRING.
CHARLIE -> dummy \\# ID of Lighter. Must be a unique STRING.
DELTA -> dummy \\# ID of Lighter. Must be a unique STRING.
ECHO -> dummy \\# ID of Lighter. Must be a unique STRING.
FOXTROT -> dummy \\# ID of Lighter. Must be a unique STRING.
GOLF -> dummy \\# ID of Lighter. Must be a unique STRING.
HOTEL -> dummy \\# ID of Lighter. Must be a unique STRING.
INDIA -> dummy \\# ID of Lighter. Must be a unique STRING.
JULIET -> dummy \\# ID of Lighter. Must be a unique STRING.
KILO -> dummy \\# ID of Lighter. Must be a unique STRING.
LIMA -> dummy \\# ID of Lighter. Must be a unique STRING.
--------------------------- LtType.dat----------=----“=-=-«----
12 # Number of Lighter records in this file.

ALFA -> # ID of Lighter. Must be a unique STRING type.
LCU2000 # Type of Lighter. Must be of LighterNameType.
LCU # Spot Type Required. Must be SpotType.

12.0 # Max Speed. Must be REAL.

10.0 # Full Load Speed. Must be REAL.

10 # Max Load in # of vehicles. Must be INTEGER.
92000.0 # Fuel Capacity in gallons. Must be REAL.

41.6 # Burn Rate in Gallons per hour. Must be REAL.
0.25 # Min Fuel expressed in percent. Must be REAL.

229

\\

BRAVO
LCU2000
LCU
12.0
10.0

10
92000.0
41.6
0.25

\\

CHARLIE
LCU2000
LCU
12.0
10.0

10
92000.0
41.6
0.25

\\

DELTA
LCU2000
LCU
12.0
10.0

10
92000.0
41.6
0.25

\\

ECHO
LCU2000
LCU
12.0
10.0

10
92000.0

->

->

IR xR TR

TR

#
#
#
#
#
#
#

Must be a unique STRING type.
Type of Lighter. Must be of LighterNameType.
Spot Type Required. Must be SpotType.

Max Speed. Must be REAL.

Full Load Speed. Must be REAL.

Max Load in # of vehicles. Must be INTEGER.
Fuel Capacity in gallons. Must be REAL.

Burn Rate in Gallons per hour. Must be REAL.
Min Fuel expressed in percent. Must be REAL.

ID of Lighter.

Must be a unique STRING type.
Type of Lighter. Must be of LighterNameType.
Spot Type Required. Must be SpotType.

Max Speed. Must be REAL.

Full Load Speed. Must be REAL.

Max Load in # of vehicles. Must be INTEGER.
Fuel Capacity in gallons. Must be REAL.

Burn Rate in Gallons per hour. Must be REAL.
Min Fuel expressed in percent. Must be REAL.

ID of Lighter.

ID of Lighter. Must be a unique STRING type.
Type of Lighter. Must be of LighterNameType.
Spot Type Required. Must be SpotType.

Max Speed. Must be REAL.

Full Load Speed. Must be REAL.

Max Load in # of vehicles. Must be INTEGER.
Fuel Capacity in gallons. Must be REAL.

Burn Rate in Gallons per hour. Must be REAL.

Min Fuel expressed in percent. Must be REAL.

ID of Lighter. Must be a unique STRING type.
Type of Lighter. Must be of LighterNameType.
Spot Type Required. Must be SpotType.

Max Speed. Must be REAL.

Full Load Speed. Must be REAL.

Max Load in # of vehicles. Must be INTEGER.

Fuel Capacity in gallons. Must be REAL.

230

41.6
0.25
\\

FOXTROT -»>

LCU1610
LCU
12.0
10.0

4
3290.0
36.0
0.25

\\

GOLF
LCU1610
LCU
12.0
10.0

3
3290.0
36.0
0.25

\\

HOTEL ->
LSV
LCU
10.6

10.0

25
165000.0
145.8
0.25

\\

INDIA ->
CWF31

® &%

3= % 3% IR

T I3 IR

H I

* I

*

Must be REAL.
Must be REAL.

Burn Rate in Gallons per hour.
Min Fuel expressed in percent.

ID of Lighter. Must be a unique STRING type.
Type of Lighter. Must be of LighterNameType.
Spot Type Required. Must be SpotType.

Max Speed. Must be REAL.

Full Load Speed. Must be REAL.

Max Load in # of vehicles. Must be INTEGER.
Fuel Capacity in gallons. Must be REAL.

Burn Rate in Gallons per hour. Must be REAL.

Min Fuel expressed in percent. Must be REAL.

ID of Lighter. Must be a unique STRING type.
Type of Lighter. Must be of LighterNameType.
Spot Type Required. Must be SpotType.

Max Speed. Must be REAL.

Full Load Speed. Must be REAL.

Max Load in # of vehicles. Must be INTEGER.
Fuel Capacity in gallons. Must be REAL.
Burn Rate in Gallons per hour. Must be REAL.

Min Fuel expressed in percent. Must be REAL.

ID of Lighter. Must be a unique STRING type.
Type of Lighter. Must be of LighterNameType.
Spot Type Required. Must be SpotType.

Max Speed. Must be REAL.

Must be REAL.

Must be INTEGER.
Must be REAL.

Must be REAL.
Must be REAL.

Full Load Speed.
Max Load in # of vehicles.
Fuel Capacity in gallons.

Burn Rate in Gallons per hour.
Min Fuel expressed in percent.

ID of Lighter.
Type of Lighter.

Must be a unique STRING type.
Must be of LighterNameType.

231

->

1000.0
20.8
0.25
W\

KILO
CWF31

->

->

HHE R R TR TR TR TR

T TR

Spot Type Required. Must be SpotType.

Max Speed. Must be REAL.

Full Load Speed. Must be REAL.

Max Load in # of vehicles. Must be INTEGER.
Fuel Capacity in gallons. Must be REAL.

Burn Rate in Gallons per hour. Must be REAL.
Min Fuel expressed in percent. Must be REAL.

ID of Lighter. Must be a unique STRING type.
Type of Lighter. Must be of LighterNameType.
Spot Type Required. Must be SpotType.

Max Speed. Must be REAL.

Full Load Speed. Must be REAL.

Max Load in # of vehicles. Must be INTEGER.

Fuel Capacity in gallons. Must be REAL.

Burn Rate in Gallons per hour. Must be REAL.

Min Fuel expressed in percent. Must be REAL.

ID of Lighter. Must be a unique STRING type.
Type of Lighter. Must be of LighterNameType.
Spot Type Required. Must be SpotType.

Max Speed. Must be REAL.

Full Load Speed. Must be REAL.

Max Load in # of vehicles. Must be INTEGER.
Fuel Capacity in gallons. Must be REAL.

Burn Rate in Gallons per hour. Must be REAL.

Min Fuel expressed in percent. Must be REAL.

ID of Lighter. Must be a unique STRING type.
Type of Lighter. Must be of LighterNameType.
Spot Type Required. Must be SpotType.

Max Speed. Must be REAL.

Full Load Speed. Must be REAL.

Max Load in # of vehicles. Must be INTEGER.
Fuel Capacity in gallons. Must be REAL.

Burn Rate in Gallons per hour. Must be REAL.

Min Fuel expressed in percent. Must be REAL.

232

Notes: a. LighterNameType = (LCU1466, LCU1610. LCU2000,

CWF1ll1, CWF21, CWF31, LSV).

These are the only options for LighterNameType.

b. SpotType

({LCU, CWF, LoLo). This refers to the
type of spot required for mooring by a lighter.
An LSV uses an LCU spot for mooring to the RRDF,
so this would be indicated in this field.

1 # Number of Refuel Areas in this file/simulation scenario

FuelDepot -> dummy \\ # Name of Refuel Area. Must be of

STRING type.

1 # Number of Refuel Area records in this file.

FuelDepot -> # Name of Refuel Area. Must be of

STRING type.

2 # Number of spots. Must be INTEGER.

6.0 # Distance from Ship. Must be REAL.

For each spot there must be a data

set. For 2 spots, we need two
BOOLEAN expressions in the following
two fields. If there were three
spots, There would be three
"SpotFree" fields in this record.

T # Spot Free. Must be BOOLEAN.

T # Spot Free. Must be BOOLEAN.

233

3500.0 # Fuel pump rate in gallons per hour.
Must be REAL.
\\

1 # Number of Ships in this file/simulation scenario

Belatrix -> dummy \\ # Name of Ship. Must be of STRING

type.

-------------------------- ShpType.dat----------=------co-n-
1 # Number of Ship records in this file.

Belatrix -> # Name of Ship. Must be of STRING
type.

SSR # Ship Type. Must be ShipTypeType (SSR, NSSR).
6.0 # Distance from BLCP. Must be REAL.

3 # Number of spots. Must be INTEGER.
LCU # Spot Type. Must be SpotType.

T # Spot Free. Must be BOOLEAN.

CWF # Spot Type. Must be SpotType.

T # Spot Free. Must be BOOLEAN.

LoLo # Spot Type. Must be SpotType.

T # Spot Free. Must be BOOLEAN.

60 # Number of LoLo vehicles. Must be INTEGER.

0 # Number of RRDF Vehicles. Must be INTEGER.

834 # Number of Any Spot vehicles. Must be INTEGER.
\\

234

Ship type is eirher self-sustaining (SSR), or non-self
sustaining (NSSR). These are the only two options.

For each spot in the record, two fields must appear:

1. SpotType, must be of type SpotType which is either
LCU, CWF, or LoLo. These are the only options for
this field.

2. SpotFree, indicates the status of the spot. normally
the spot would be empty at the start of a simulation
run, thus, indicated by a "T" for TRUE.

The number of vehicles on the ship can be partitioned
into three sets. For example, in the set above there are a
total of 894 vehicles onboard. Of those, 60 must be
offloaded from the LoLo spot, zero are may be removed from
the RRDF only, and 834 can be removed from any spot, or the
first spot available.

235

APPENDIX E

This appendix contains

The sample files below are

of the validation scenario.

explanitory, all times are

--------------- Through
Rep# Total Time
1 5795.406696
2 4516.278981
3 5049.667063
4 4212.945852
5 4342 .143585
6 4598.425586
7 4306.958894
8 5356.148307
9 4627.004724
10 4096.678710
Total number of reps compl
Mean Throughput Time = 469
--------------- Idle Beach

SAMPLE OUTPUT PILES

a complete set of output files.
the results of ten replications
The files themselves are self

in minutes.

eted = 10
0.165840

Spot Time Stats

Rep# Beach Make Beach ID Mean Idle Time
1 BareBeach NorthBeach 1851.511594

1 FloatingCWwPier Admin 2696.831036

1 FloatingCWPier Army 3044.404815

236

W W WWOWMOMOWSNNSNNONAANAANALULLU WD BB B WWWWNNDDDNDRE

B
O O O

10

Total number of reps completed = 10

FloatingCwWPier
BareBeach

FloatingCwPier
FloatingCWPier
FloatingCWPier
BareBeach

FloatingCwPier
FloatingCWPier
FloatingCwPier
BareBeach

FloatingCwPier
FloatingCwPier
FloatingCwWPier
BareBeach

FloatingCwPier
FloatingCwPier
FloatingCwPier
BareBeach

FloatingCwPier
FloatingCWPier
FloatingCWPier
BareBeach

FloatingCWPier
FloatingCwPier
FloatingCWPier
BareBeach

FloatingCWPier
FloatingCwPier
FloatingCwPier
BareBeach

FloatingCwPier
FloatingCWPier
FloatingCWPier
BareBeach

FloatingCWPier
FloatingCWwPier
FloatingCWPier

Navy
NorthBeach

Admin
Army
Navy
NorthBeach
Admin
Army
Navy
NorthBeach
Admin
Army

Navy
NorthBeach

Admin
Army
Navy
NorthBeach
Admin
Army
Navy
NorthBeach
Admin
Army

Navy
NorthBeach

Admin
Army
Navy
NorthBeach
Admin
Army
Navy
NorthBeach
Admin
Army
Navy

237

2706.889934
2126.357278
2633.401745
2666.989835
0.000000

2214.400175
2615.639354
2678.884777
0.000000

2030.798808
2660.519865
2757.632933
0.000000

2056.886539
2778.227232
3207.377480
0.000000

2289.250141
2956.250880
2864.941143
0.000000

2098.334342
2689.334808
3177.835989
0.000000

2368.197230
3099.115844
3013.179778
0.000000

2420.594112
2873.591649
3006.716735
0.000000

2186.314462
2618.761722
3208.601058
0.000000C

Grand Mean For Beach Spot Idle Time
ID = NorthBeach
Grand Mean For Beach Spot Idle Time

2164.264468 For Beach

2762.167413 For Beach

ID = Admin
Grand Mean For Beach Spot Idle Time = 2962.656454 For Beach
ID = Army
Grand Mean For Beach Spot Idle Time = 270.688993 For Beach
ID = Navy
--------------------------- SSpOt .OUt---------cmmemeaaaa
--------------- Idle Ship Spot Time Stats----------------
Rep# Ship Name Mean LCU Mean CWF Mean LoLo
1 Belatrix 1983 .547568 2274 .516363 1541.758145
2 Belatrix 1512.667104 1215.405897 1984.996518
3 Belatrix 2438.643103 2187.915981 1553.953693
4 Belatrix 2349.907577 1956.123552 1665.716019
5 Belatrix 1469.847130 1351.808132 2062.091047
6 Belatrix 1950.243928 1334.895501 2027.822743
7 Belatrix 820.284977 1445.356970 1481.796293
8 Belatrix 1468.487069 2564.665516 1515.234788
9 Belatrix 2014.772655 1953.579125 1429.237818

10 Belatrix 1474.539864 1584.341778 1938.257845

Total number of reps completed = 10

Grand Mean For LCU Ship Spot Idle Time 1748.294097

Grand Mean For CWF Ship Spot Idle Time 1786.860881

Grand Mean For LoLo Ship Spot Idle Time = 1720.086491

(]

238

Rep#

W oo o d Wi

10

WO, b WP %
ye,
3*

oy
o

Total
Grand
Grand
Grand
Grand
Grand
Grand

Mean LCU
Ship

457.868142

716.492200

757.9664
809.1269
902.4818
1099.2759
828.0912
1197.9242

80
43
43
97
72
13

995.634134
983.139182

Mean LCU

Beach
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000
.000000

O OO O0OOO0OO0OO0O OO0

number of reps

Mean For
Mean For
Mean For
Mean For
Mean For
Mean For

LCU
Lsv
CWF
LCU
Lsv
CWF

Mean LSV Mean CWF
Ship Ship
630.036495 582.470282
535.805339 433.802158
393.900755 466.858381
285.984057 503.752261
587.302477 398.722487
518.580067 680.860167
552.074930 456 .557370
529.680445 465.659741
716.634971 547.029459
434.378531 391.346992
Mean LSV Mean CWF
Beach Beach
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
0.000000 0.000000
completed = 10
in Beach Queue = 0.000000
in Beach Queue = 0.0060000
in Beach Queue = 0.000000
in Ship Queue = 874.800041
in Ship Queue = 518.437807
in Ship Queue = 492.705930

239

INITIAL DISTRIBUTION LIST

Defense Logistics Studies Information Exchange

U.S. Army Logistics Management Center
Fort Lee, VA 23801

Defense Technical Information Center
Cameron Station
Alexandria, VA 22304-6145

Deputy Chief of Naval Operations (Logistics)

N-402D
Washington, DC 20350

ATTN: Captain Steve Christy
DoD Joint Test Directorate
JLOTS III

Bunker 101

Fort Story, VA 23459

Library, Code 0142
Naval Postgraduate School
Monterey, CA 93943-5002

Professor William G. Kemple, Code OR/KE
Naval Postgraduate School
Monterey, CA 93943-5002

Professor Keebom Kang, Code AS/KK
Naval Postgraduate School
Monterey, CA 93943-5002

Professor David Schrady, Code OR/SO

Naval Postgraduate School
Monterey, CA 93943-5002

240

10.

11.

LPEILD

J-4, The Joint Staff
Pentagon

Washington DC, 20318-4000

Mobility Division

J-4, The Joint Staff
Pentagon

wWashington DC, 20318-4000

Lieutenant Jack S. Noel

Department Head School, Class 131
Newport, RI 02841

241

